Sandwich compounds of transition metals with cyclopolyenes and isolobal boron analogues.

A series of sandwich compounds of transition metals (M=Ni, Fe, Cr) with cyclic hydrocarbon (M(CH)(n)) and borane (M(BH(2))(n)), ligands (including mixed hydrocarbon/borane sandwiches) has been studied using density functional theory (B3LYP/6-311+G(df,p)). Multicenter bonding between the central metal atom and basal cycloborane rings provides stabilization to planar cycloborane species. Large negative NICS values allude to aromatic character in the cycloboranes similar to the analogous cyclic hydrocarbons. The ability of cycloborane sandwiches to stabilize attached carbocations, radicals and carbanions is also assessed.

[1]  A. Šarić,et al.  Density functional study of protonated formylmetallocenes , 2008 .

[2]  R. Gleiter,et al.  α-Metallocenylmethylium Ions and Isoelectronic Fulvene Complexes of d6 to d9 Metals. Structural Considerations§ , 2007 .

[3]  J. Lex,et al.  Stereospecific Side Chain Activation in Cyclobutadiene–Fe(CO)3 Chemistry: A Theoretical and Experimental Study on the Structure and Configurational Stability of Cationic, Radical and Anionic Intermediates , 2007 .

[4]  Y. Yamaguchi,et al.  Electronic structure, spectroscopy, and photochemistry of group 8 metallocenes , 2007 .

[5]  K. Lyssenko,et al.  Estimation of the barrier to rotation of benzene in the (eta 6-C6H6)2Cr crystal via topological analysis of the electron density distribution function. , 2006, The journal of physical chemistry. A.

[6]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[7]  R. M. Minyaev,et al.  Carbon, nitrogen, and oxygen hypercoordination in half-sandwich and sandwich structures , 2005 .

[8]  M. Bühl,et al.  Molecular dynamics of neutral and protonated ferrocene , 2005 .

[9]  N. Metzler‐Nolte,et al.  Bioorganometallic chemistry of ferrocene. , 2004, Chemical reviews.

[10]  A. Kudinov,et al.  Tetramethylcyclobutadiene)cobalt chemistry , 2004 .

[11]  Gernot Frenking,et al.  Bis(benzene)chromium Is a δ-Bonded Molecule and Ferrocene Is a π-Bonded Molecule† , 2003 .

[12]  Gernot Frenking,et al.  Structures and bonding of the sandwich complexes [Ti(eta5-E5)2]2- (E = CH, N, P, As, Sb): a theoretical study. , 2003, Inorganic chemistry.

[13]  Gernot Frenking,et al.  Structures, metal-ligand bond strength, and bonding analysis of ferrocene derivatives with group-15 heteroligands Fe(η5-E5)2 and FeCp(η5-E5) (E = N, P, As, Sb). A theoretical study , 2002 .

[14]  N. N. Greenwood The concept of boranes as ligands , 2002 .

[15]  W. Koch,et al.  Density functional investigation of reactive intermediates derived from alkyne-Co2(CO)6 complexes. , 2001, Chemistry.

[16]  G. Frenking,et al.  Iron bispentazole Fe(eta5-N5)2, a theoretically predicted high-energy compound: structure, bonding analysis, metal-ligand bond strength and a comparison with the isoelectronic ferrocene. , 2001, Chemistry.

[17]  K. Houk,et al.  Donor and acceptor properties of the chromium tricarbonyl substituent in benzylic and homobenzylic anions, cations, and radicals. , 2001, The Journal of organic chemistry.

[18]  C. Mijoule,et al.  Density Functional Study of Metal−Arene Compounds: Mono(benzene)chromium, Bis(benzene)chromium and Their Cations , 2001 .

[19]  K. Houk,et al.  Reactivity of (eta(6)-arene)tricarbonylchromium complexes toward additions of anions, cations, and radicals. , 2001, Journal of the American Chemical Society.

[20]  K. Houk,et al.  Attenuating and Supplanting Nonclassical Stabilization: Cr(CO)3-Complexed Benzonorbornenyl Cations , 2000 .

[21]  Creary Radical stabilizing ability of the ferrocenyl and cyclobutadieneiron tricarbonyl groups , 2000, Organic letters.

[22]  W. Koch,et al.  Structural and Energetical Characterization of the Methylbutadiene–Fe(CO)3 Isomers and Related Reactive Intermediates with Quantum Chemical Methods , 1999 .

[23]  James R. Porter Formation of Carbon-Carbon Bonds Using Iron Tricarbonyl-(η4-cyclobutadienyl)-Stabilized Carbonium Ions , 1999 .

[24]  S. Yabushita,et al.  Ionization Energies and Bonding Scheme of Multiple-Decker Sandwich Clusters: Mn(C6H6)n+1 , 1999 .

[25]  K. Houk,et al.  Chemical Hermaphroditism: The Potential of the Cr(CO)3 Moiety To Stabilize Transition States and Intermediates with Anionic, Cationic, or Radical Character at the Benzylic Position , 1999 .

[26]  J. Bats,et al.  Structural and Energetical Characterization of Reactive Intermediates Derived from Toluene–Cr(CO)3 , 1999 .

[27]  H. Lüthi How well does coupled-cluster theory predict equilibrium geometries of transition metal compounds? A study on some classical mononuclear closed shell sandwich and carbonyl complexes , 1996 .

[28]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[29]  I. Fragalà,et al.  Metal−Ligand Bonding and Bonding Energetics in Zerovalent Lanthanide, Group 3, Group 4, and Group 6 Bis(arene) Sandwich Complexes. A Combined Solution Thermochemical and ab Initio Quantum Chemical Investigation , 1996 .

[30]  H. Mayr,et al.  How Electrophilic are Ferrocenylmethyl Cations? Kinetics of their Reactions with π Nucleophiles and Hydride Donors† , 1994 .

[31]  A. Bérces,et al.  Harmonic Force Fields and Vibrational Frequencies of Benzene, Dibenzene-Chromium, Benzene-Chromium Tricarbonyl, and Chromium-Hexacarbonyl. A Density Functional Study , 1994 .

[32]  R. M. Minyaev Gradient lines on multidimensional potential energy surfaces and chemical reaction mechanisms , 1994 .

[33]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[34]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[35]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[36]  T. Kenny,et al.  Stable carbocations: XXIII. Generation and isolation of salts of ferrocenyl(alkoxy)methylium cations and their intermediacy in acid-promoted acetal hydrolysis , 1991 .

[37]  C. Elschenbroich Organometallics: A Concise Introduction , 1989 .

[38]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[39]  R. L. Williamson,et al.  Geometry optimization of organometallic complexes: A study of basis sets , 1987 .

[40]  M. Hall,et al.  Generalized molecular orbital calculations on the ground and ionic states of (.eta.4-cyclobutadiene)tricarbonyliron(0) , 1983 .

[41]  N. N. Greenwood Metalloborane cluster compounds , 1983 .

[42]  R. Grimes Metallacarboranes and metal-boron clusters in organometallic synthesis , 1982 .

[43]  S. Carter,et al.  The barrier to internal rotation in metallocenes , 1980 .

[44]  R. Weiss,et al.  Polyhedral ferraboranes derived from the B5H8- ion. Analogs of ferrocene, hexaborane(10), and nido-B11H15 , 1979 .

[45]  A. Haaland Molecular structure and bonding in the 3d metallocenes , 1979 .

[46]  B. Bursten,et al.  Molecular orbital studies on cyclobutadienemetal complexes: the concept of metalloaromaticity , 1979 .

[47]  R. Grimes Structure and stereochemistry in metalloboron cage compounds , 1978 .

[48]  R. Weiss,et al.  New ferraboranes. Structural analogs of hexaborane(10) and ferrocene. A complex of cyclic B5H10-, a counterpart of C5H5- , 1977 .

[49]  D. Seyferth,et al.  A 13C nuclear magnetic resonance study of cyclobutadieneirontricarbonyl-substituted carbonium ions , 1976 .

[50]  D. Moody,et al.  Recent advances in the chemistry of boron hydrides , 1974 .

[51]  K. Hodgson,et al.  Preparation and properties of uranocene, Di-$pi$- cyclooctatetraeneuranium(IV) , 1973 .

[52]  R. Grimes,et al.  Preparation of stable closo- and nideo-cobaltaboranes from sodium(+) octahydropentaborate(-). Complexes of the formal octahydrotetraborate(2-) and hexahydrotetraborate(4-) ligands , 1973 .

[53]  E. Fluck,et al.  Partial Charge on the Iron in the Diferrocenylmethylium Ion , 1972 .

[54]  E. Fluck,et al.  Partialladung des Eisens im Diferrocenylmethylium-Ion , 1972 .

[55]  M. Rosenblum,et al.  Synthesis and chemistry of h4-cyclobutadiene (h5-cyclopentadienyl) cobalt , 1972 .

[56]  R. Seeger,et al.  The Structure of the Ferrocenyl‐Methyl Cation. Preliminary communication , 1971 .

[57]  M. Rausch,et al.  Organometallic .pi. complexes. XXII. Chemistry of .pi.-cyclopentadienyltetraphenylcyclobutadienecobalt and related compounds , 1970 .

[58]  L. Sneddon,et al.  Magnetic resonance spectra of tetraborane(10), pentaborane(11), hexaborane(10), and hexaborane(12) , 1970 .

[59]  F. Schué,et al.  Étude physico-chimique des complexes tétraéthylzincate de calcium, strontium et baryum , 1970 .

[60]  S. J. Cyvin,et al.  Some additional evidence for the sixfold symmetry of benzene in dibenzenechromium in the vapor phase , 1970 .

[61]  F. E. Stafford,et al.  Molecular beam mass spectra and pyrolysis of pentaborane(9), tetraborane carbonyl, and pentaborane(11). Formation and mass spectrum of tetraborane(8) , 1970 .

[62]  E. Westrum,et al.  Heat capacity and vapor pressure of crystalline bis(benzene)chromium. Third-law entropy comparison and thermodynamic evidence concerning the structure of bis(benzene)chromium , 1969 .

[63]  A. Streitwieser,et al.  Bis(cyclooctatetraenyl)uranium (uranocene). A new class of sandwich complexes that utilize atomic f orbitals , 1968 .

[64]  M. Hawthorne Chemistry of the polyhedral species derived from transition metals and carboranes , 1968 .

[65]  M. Rosenblum,et al.  Photochemical synthesis of cyclobutadiene(cyclopentadienyl)cobalt , 1968 .

[66]  M. Hawthorne,et al.  .pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs , 1968 .

[67]  M. Rausch,et al.  Aromatic-type substitution reactions of an organocobalt compound , 1967 .

[68]  P. Maitlis,et al.  Cyclobutadiene–metal complexes. XI. Tetramethylcyclobutadienecobalt(I) complexes , 1967 .

[69]  Robert K. Bohn,et al.  On the molecular structure of ferrocene, Fe(C5H5)2 , 1966 .

[70]  F. Jellinek,et al.  Molecular symmetry and crystal structure of dibenzene chromium , 1966 .

[71]  M. Gordon,et al.  Mass Spectrometric Investigation of the Pyrolysis of Boranes. Tetraborane(10)1 , 1966 .

[72]  M. Hawthorne,et al.  Carabametallic Boron Hydride Derivatives. III. The π-C5H5Fe(π-B9C2H11) System , 1965 .

[73]  G. F. Emerson,et al.  Cyclobutadieneiron Tricarbonyl. A New Aromatic System1 , 1965 .

[74]  T. E. Hopkins,et al.  The Crystal and Molecular Structure of C5H5FeB9C2H11 , 1965 .

[75]  M. Cais,et al.  Organometallic Studies. X.1a Reductive Dimerization of α-Metallocenylcarbonium Ions. I1b , 1965 .

[76]  D. Gaines,et al.  Studies of Boranes. XI. The Preparation and Properties of Hexaborane-12, B6H12 , 1964 .

[77]  F. Jellinek The crystal structure of dibenzene chromium at room temperature , 1963 .

[78]  F. Cotton,et al.  The Crystal Structure and Molecular Structure of Dibenzenechromium , 1963 .

[79]  A. Attalla,et al.  Activation Energies for Reorientation Processes in Ferrocene and Some of its Derivatives: A Study of Proton Magnetic Resonance Spectra , 1963 .

[80]  A. Nakamura,et al.  New Stable Olefin Complexes of Cobalt(I) , 1961 .

[81]  R. Woodward,et al.  The Structure and Chemistry of Ferrocene. III. Evidence Pertaining to the Ring Rotational Barrier , 1958 .

[82]  L. E. Sutton,et al.  Structure of Ferrocene , 1955 .

[83]  T. J. KEALY,et al.  A New Type of Organo-Iron Compound , 1951, Nature.

[84]  M. Drees,et al.  Planar Chiral (Arene)chromiumcarbonyl-Substituted Propargyl Cations – A Spectroscopic and Computational Study , 2007 .

[85]  N. N. Greenwood Les liaisons triangulaires changent les perspectives de la chimie , 2003 .

[86]  D. Seyferth Cyclobutadiene)iron TricarbonylA Case of Theory before Experiment , 2003 .

[87]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[88]  K. Pierloot,et al.  THEORETICAL STUDY OF THE CHEMICAL BONDING IN NI(C2H4) AND FERROCENE , 1995 .

[89]  P. Härter,et al.  Isometallocenes. Part 1. Polymethylated isocobaltocenium salts; a general route to [Co(C4Me4)(arene)] , 1987 .

[90]  K. D. Warren,et al.  Molecular orbital calculations on transition metal complexes. Part XXI. The influence of ring size on metal-ligand interactions in 3d sandwich compounds , 1978 .

[91]  A. Haaland,et al.  Organometallic compounds studied by gas-phase electron diffraction. , 1975, Topics in current chemistry.

[92]  G. Gosselin Structural Inorganic Chemistry , 1971, Nature.

[93]  F. E. Stafford,et al.  Symmetry of gaseous dibenzenechromium , 1969 .

[94]  E. Hill,et al.  Stability of ferrocenylcarbonium ions , 1969 .

[95]  A. Haaland,et al.  The determination of the barrier to internal rotation in ferrocene and ruthenocene by means of electron diffraction , 1968 .

[96]  Thomas Olson,et al.  The Determination of Barriers to Internal Rotation by Means of Electron Diffraction. Ferrocene and Ruthenocene. , 1968 .

[97]  A. Haaland,et al.  The Molecular Structure of Gaseous Dibenzene Chromium (C6H6)2Cr. , 1965 .