The Use of Soluble Silicon via Fertigation and Leaf Application in Panicum Maximum Modulates Production Without Decreasing Grass Quality

[1]  Yingchao Su,et al.  Supplemental mineral ions for bone regeneration and osteoporosis treatment , 2023, Engineered Regeneration.

[2]  Renato de Mello Prado,et al.  New outcomes on how silicon enables the cultivation of Panicum maximum in soil with water restriction , 2022, Scientific Reports.

[3]  B. Wróbel,et al.  Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands , 2022, Agriculture.

[4]  Renato de Mello Prado,et al.  Silicon mitigates nutritional stress of nitrogen, phosphorus, and calcium deficiency in two forages plants , 2021, Scientific Reports.

[5]  Renato de Mello Prado,et al.  Effects of silicon fertigation on dry matter production and crude protein contents of a pasture , 2021, Journal of Soil Science and Plant Nutrition.

[6]  M. Piccolo,et al.  Silicon attenuates the effects of water deficit in sugarcane by modifying physiological aspects and C:N:P stoichiometry and its use efficiency , 2021 .

[7]  M. Piccolo,et al.  Root- and foliar-applied silicon modifies C: N: P ratio and increases the nutritional efficiency of pre-sprouted sugarcane seedlings under water deficit , 2020, PloS one.

[8]  G. Caione,et al.  Silicon Contribution Via Nutrient Solution in Forage Plants to Mitigate Nitrogen, Potassium, Calcium, Magnesium, and Sulfur Deficiency , 2020, Journal of Soil Science and Plant Nutrition.

[9]  D. Reheul,et al.  Prospects to select tall fescue with a low silica concentration , 2020, Euphytica.

[10]  E. Szara,et al.  Can the Application the Silicon Improve the Productivity and Nutritional Value of Grass–Clover Sward in Conditions of Rainfall Shortage in Organic Management? , 2020, Agronomy.

[11]  M. Hodson,et al.  The Relative Importance of Cell Wall and Lumen Phytoliths in Carbon Sequestration in Soil: A Hypothesis , 2019, Front. Earth Sci..

[12]  C. Halpin Lignin engineering to improve saccharification and digestibility in grasses. , 2019, Current opinion in biotechnology.

[13]  R. Prado,et al.  Silicon foliar application on nutrition and growth of Phalaenopsis and Dendrobium orchids , 2018, Scientia Horticulturae.

[14]  J. Schjoerring,et al.  The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon , 2018, Biotechnology for Biofuels.

[15]  Zhaoliang Song,et al.  Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis , 2018, Agronomy for Sustainable Development.

[16]  V. Euclides,et al.  Maintaining post‐grazing sward height of Panicum maximum (cv. Mombaça) at 50 cm led to higher animal performance compared with post‐grazing height of 30 cm , 2018 .

[17]  J. Schaller,et al.  Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.) , 2017, Scientific Reports.

[18]  M. Ismail,et al.  Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia , 2017 .

[19]  Lijun Wang,et al.  A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. , 2015, The New phytologist.

[20]  R. Wade,et al.  Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply , 2015, Front. Plant Sci..

[21]  Fangsen Xu,et al.  Evidence for 'silicon' within the cell walls of suspension-cultured rice cells. , 2013, The New phytologist.

[22]  Alisdair R Fernie,et al.  Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. , 2012, The New phytologist.

[23]  P. H. Robinson,et al.  Impacts of silica levels, and location in the detergent fiber matrix, on in vitro gas production of rice straw , 2012 .

[24]  M. Haghighi,et al.  The Alleviation Effect of Silicon on Seed Germination and Seedling Growth of Tomato Under Salinity Stress , 2012 .

[25]  F. D. Bona,et al.  Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha , 2010, Plant and Soil.

[26]  G. Silva,et al.  EFEITO DA ADUBAÇÃO SILICATADA SOBRE GRAMÍNEAS FORRAGEIRAS E CARACTERÍSTICAS QUÍMICAS DO SOLO , 2010 .

[27]  N. Yamaji,et al.  Spatial Distribution and Temporal Variation of the Rice Silicon Transporter Lsi11 , 2007, Plant Physiology.

[28]  J. Ma,et al.  Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses , 2004 .

[29]  A. Rebolé,et al.  CHEMICAL CHANGES ASSOCIATED WITH THE FIELD DRYING OF OAT FORAGE , 1996 .

[30]  M. Allen,et al.  Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. , 1995, Journal of animal science.

[31]  P. V. Soest Nutritional Ecology of the Ruminant , 1994 .

[32]  E. M. Carlisle Silicon as a trace nutrient. , 1988, The Science of the total environment.

[33]  J. M. A. Tilley,et al.  A TWO-STAGE TECHNIQUE FOR THE IN VITRO DIGESTION OF FORAGE CROPS , 1963 .

[34]  Renato de Mello Prado Mineral nutrition of tropical plants , 2021 .

[35]  M. Siddiqi,et al.  Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants , 1981 .

[36]  R. Jarrige,et al.  DIGESTIBILITÉ DES CONSTITUANTS DU RAY-GRASS ANGLAIS S 24 ET DU DACTYLE S 37, PLUS SPÉCIALEMENT DES CONSTITUANTS GLUCIDIQUES , 1964 .