The Motivic Spectral Sequence
暂无分享,去创建一个
[1] Michael Cole,et al. Rings, Modules, and Algebras in Stable Homotopy Theory , 2007 .
[2] Martin Cloutier,et al. AVEC LA COLLABORATION DE , 2006 .
[3] E. Friedlander,et al. Techniques, computations, and conjectures for semi-topological K-theory , 2004 .
[4] M. Karoubi,et al. Algebraic and Real K-theory of Algebraic varieties , 2003, math/0509412.
[5] A. Suslin. On the Grayson Spectral Sequence , 2003 .
[6] A. Suslin,et al. The spectral sequence relating algebraic K-theory to motivic cohomology , 2002 .
[7] Claudio Pedrini,et al. The Higher K-Theory of Real Curves , 2002 .
[8] Bruno Kahn,et al. K-Theory of Semi-local Rings with Finite Coefficients and Étale Cohomology , 2002 .
[9] Vladimir Voevodsky,et al. Motivic cohomology groups are isomorphic to higher chow groups in any characteristic , 2002 .
[10] Claudio Pedrini,et al. The Higher K-Theory of a Complex Surface , 2001, Compositio Mathematica.
[11] V. Voevodsky. On 2-torsion in motivic cohomology , 2001, math/0107110.
[12] M. Atiyah. K-Theory Past and Present , 2000, math/0012213.
[13] C. Weibel,et al. The Higher K-Theory of Complex Varieties , 2000 .
[14] Vladimir Voevodsky,et al. A1-homotopy theory of schemes , 1999 .
[15] C. Weibel,et al. TWO-PRIMARY ALGEBRAIC K-THEORY OF RINGS OF INTEGERS IN NUMBER FIELDS , 1999 .
[16] C. Weibel,et al. ETALE DESCENT FOR TWO-PRIMARY ALGEBRAIC K-THEORY OF TOTALLY IMAGINARY NUMBER FIELDS , 1999 .
[17] C. Weibel. The 2-torsion in the K-theory of the integers , 1997 .
[18] M. Paluch. Topology on s−1s for banach algebras , 1996 .
[19] M. Walker. Motivic complexes and the K-theory of automorphisms , 1996 .
[20] Daniel R. Grayson. Weight filtrations via commuting automorphisms , 1995 .
[21] Jon P. May,et al. Generalized Tate Cohomology , 1995 .
[22] S. Landsburg. Some filtrations on higherK-theory and related invariants , 1992 .
[23] Daniel R. Grayson. WEIGHT FILTRATIONS IN ALGEBRAIC K-THEORY , 1992 .
[24] Spencer Bloch,et al. Algebraic cycles and higher K-theory , 1986 .
[25] A. A. Beilinson,et al. Higher regulators and values of L-functions , 1985 .
[26] W. Fulton,et al. Riemann-Roch Algebra , 1985 .
[27] S. Lichtenbaum. Values of zeta-functions at non-negative integers , 1984 .
[28] Daniel R. Grayson. Higher algebraic K-theory: II , 1976 .
[29] S. Gersten,et al. Algebraic K-theory as generalized sheaf cohomology , 1973 .
[30] D. Quillen,et al. Higher algebraic K-theory: I , 1973 .
[31] M. Karoubi,et al. Relations between higher algebraic K-theories , 1973 .
[32] A. Grothendieck,et al. Th'eorie des intersections et th'eor`eme de Riemann-Roch , 1971 .
[33] Kochendörffer. S. MacLane, Homology (Die Grundlehren der mathematischen Wissenschaften, Band 114). X + 422 S. mit 7 Fig. Berlin/Göttingen/Heidelberg 1963. Springer-Verlag. Preis geb. DM 62,– , 1963 .
[34] M. Atiyah,et al. Vector bundles and homogeneous spaces , 1961 .