Robust dynamic surface control of flexible joint robots using recurrent neural networks

A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H-infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dynamic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally, simulation results verify the effectiveness of the proposed control scheme.

[1]  Kwang Y. Lee,et al.  Diagonal recurrent neural networks for dynamic systems control , 1995, IEEE Trans. Neural Networks.

[2]  Y. Shrivastava,et al.  Adaptive H∞ neural network tracking controller for electrically driven manipulators , 1998 .

[3]  F. Ghorbel,et al.  Adaptive integral manifold control of flexible joint robot manipulators , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[4]  J. C. Gerdes,et al.  Dynamic surface control of nonlinear systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[5]  Chih-Min Lin,et al.  CMAC-based supervisory control for nonlinear chaotic systems , 2008 .

[6]  Chris Lightcap,et al.  An Extended Kalman Filter for Real-Time Estimation and Control of a Rigid-Link Flexible-Joint Manipulator , 2010, IEEE Transactions on Control Systems Technology.

[7]  Petar V. Kokotovic,et al.  An integral manifold approach to the feedback control of flexible joint robots , 1987, IEEE J. Robotics Autom..

[8]  Jin S. Lee,et al.  Control of flexible joint robot system by backstepping design approach , 1997, Proceedings of International Conference on Robotics and Automation.

[9]  Jin Bae Park,et al.  Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Swaroop Darbha,et al.  Dynamic surface control for a class of nonlinear systems , 2000, IEEE Trans. Autom. Control..

[11]  David G. Taylor,et al.  Composite control of direct-drive robots , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[12]  A. A. Abouelsoud Robust Regulator for Flexible-Joint Robots Using Integrator Backstepping , 1998, J. Intell. Robotic Syst..

[13]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[14]  Weisheng Chen Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks , 2009 .

[15]  Chih-Min Lin,et al.  Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems , 2006, IEEE Transactions on Neural Networks.

[16]  Mark W. Spong,et al.  Adaptive control of flexible-joint manipulators , 1989 .

[17]  Chih-Hong Lin,et al.  Robust H∞ controller design with recurrent neural network for linear synchronous motor drive , 2003, IEEE Trans. Ind. Electron..

[18]  Shuzhi Sam Ge,et al.  Adaptive neural control of uncertain MIMO nonlinear systems , 2004, IEEE Transactions on Neural Networks.

[19]  Frank L. Lewis,et al.  ROBUST NEURAL NETWORK CONTROL OF RIGID LINK FLEXIBLE‐JOINT ROBOTS , 1999 .

[20]  Jin Bae Park,et al.  Adaptive Output Feedback Control of Flexible-Joint Robots Using Neural Networks: Dynamic Surface Design Approach , 2008, IEEE Transactions on Neural Networks.

[21]  Rong-Jong Wai,et al.  Adaptive backstepping control using recurrent neural network for linear induction motor drive , 2002, IEEE Trans. Ind. Electron..

[22]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[23]  Frank L. Lewis,et al.  Robust backstepping control of nonlinear systems using neural networks , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[24]  Je Sung Yeon,et al.  Practical robust control for flexible joint robot manipulators , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  Chih-Min Lin,et al.  Intelligent adaptive control for MIMO uncertain nonlinear systems , 2008, Expert Syst. Appl..

[26]  Okyay Kaynak,et al.  Robust and adaptive backstepping control for nonlinear systems using RBF neural networks , 2004, IEEE Transactions on Neural Networks.

[27]  Faa-Jeng Lin,et al.  Adaptive hybrid control using a recurrent neural network for a linear synchronous motor servo-drive system , 2001 .

[28]  Shuzhi Sam Ge,et al.  Adaptive neural network control for strict-feedback nonlinear systems using backstepping design , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[29]  Shuzhi Sam Ge,et al.  Direct adaptive NN control of a class of nonlinear systems , 2002, IEEE Trans. Neural Networks.

[30]  C.-M. Lin,et al.  Robust cerebellar model articulation controller design for unknown nonlinear systems , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  K. Khorasani Nonlinear feedback control of flexible joint manipulators: a single link case study , 1990 .

[32]  Je Sung Yeon,et al.  Practical Robust Control for Flexible Joint Robot Manipulators , 2008 .

[33]  Darren M. Dawson,et al.  Contril of rigid-link, flexible-joint robots: a survey of backstepping approaches , 1995, J. Field Robotics.

[34]  Dan Wang,et al.  Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form , 2005, IEEE Transactions on Neural Networks.

[35]  Chih-Min Lin,et al.  Recurrent-neural-network-based adaptive-backstepping control for induction servomotors , 2005, IEEE Transactions on Industrial Electronics.