Dynamical Test and Modeling for Hydraulic Shock Absorber on Heavy Vehicle under Harmonic and Random Loadings

The aim of this study is to found the suitable loading condition during damper dynamic test and develop a testing and analysis methodology for obtaining the dynamic properties of shock absorbers for use in vehicle dynamic simulation. Using harmonic and random loadings, the dynamical characteristics of a hydraulic shock absorber on heavy vehicle are measured and analyzed. Based on the test data, a piecewise non- linear model for the shock absorber is proposed and the model parameters are identified under different loadings. By comparing the simulation results and field test data of the vehicle responses, the effect of loading type during the test of shock absorber on model accuracy is researched. Thus it is possible to choose a suitable loading mode to impel the piston of the shock absorber and build a reasonable absorber model used in vehicle dynamic simulation.