A note on Sylvester-type equations
暂无分享,去创建一个
[1] Masoud Hajarian,et al. Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations , 2013, J. Frankl. Inst..
[2] Guoliang Chen,et al. Iterative methods for solving linear matrix equation and linear matrix system , 2010, Int. J. Comput. Math..
[3] Daniel Kressner,et al. Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.
[4] E. Chu,et al. Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms , 2008 .
[5] V. Mehrmann. The Autonomous Linear Quadratic Control Problem , 1991 .
[6] E. Chu,et al. PALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEY , 2010 .
[7] Harald K. Wimmer. Roth's theorems for matrix equations with symmetry constraints , 1994 .
[8] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[9] G. W. Stewart,et al. Computer Science and Scientific Computing , 1990 .
[10] Ilse C. F. Ipsen. Accurate Eigenvalues for Fast Trains , 2004 .
[11] Wen-Wei Lin,et al. A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation , 2006, Numerische Mathematik.
[12] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .
[13] Daniel Kressner,et al. Structured Condition Numbers for Invariant Subspaces , 2006, SIAM J. Matrix Anal. Appl..
[14] P. Lancaster,et al. Factorization of selfadjoint matrix polynomials with constant signature , 1982 .
[15] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[16] Volker Mehrmann,et al. Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..
[17] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[18] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[19] Tiexiang Li,et al. The palindromic generalized eigenvalue problem A∗x=λAx: Numerical solution and applications , 2011 .
[20] K. Weierstrass. Zur Theorie der bilinearen und quadratischen Formen , 2013 .
[21] Wen-Wei Lin,et al. On the ⋆-Sylvester equation AX ± X⋆ B⋆ = C , 2012, Appl. Math. Comput..
[22] Fernando De Ter,et al. CONSISTENCY AND EFFICIENT SOLUTION OF THE SYLVESTER EQUATION FOR ⋆-CONGRUENCE , 2011 .
[23] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[24] Lv Tong,et al. The solution to Matrix Equation , 2002 .
[25] Volker Mehrmann,et al. ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .
[26] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[27] Qingling Zhang,et al. The solution to matrix equation AX+XTC=B , 2007, J. Frankl. Inst..
[28] K. Chu. The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .