An $S$-adic characterization of minimal subshifts with first difference of complexity $1 \leq p(n+1) - p(n) \leq 2$
暂无分享,去创建一个
[1] Sébastien Ferenczi,et al. Complexity of sequences and dynamical systems , 1999, Discret. Math..
[2] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[3] Gilles Didier. Combinatoire des codages de rotations , 1998 .
[4] Julien Leroy,et al. Do the Properties of an S-adic Representation Determine Factor Complexity? , 2013 .
[5] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[6] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[7] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[8] I. Putnam,et al. Ordered Bratteli diagrams, dimension groups and topological dynamics , 1992 .
[9] Sébastien Ferenczi,et al. Languages of k-interval exchange transformations , 2008 .
[10] Alfred J. van der Poorten,et al. Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..
[11] Jean-Paul Allouche,et al. Sur la complexite des suites in nies , 1994 .
[12] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[13] Filippo Mignosi,et al. Morphismes sturmiens et règles de Rauzy , 1993 .
[14] Valérie Berthé,et al. Initial powers of Sturmian sequences , 2006 .
[15] O. Bratteli. Inductive limits of finite dimensional C*-algebras , 1972 .
[16] Christian F. Skau,et al. Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.
[17] M. Boshernitzan,et al. A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .
[18] Julien Cassaigne,et al. Complexité et facteurs spéciaux , 1997 .
[19] Jean-Jacques Pansiot,et al. Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.
[20] Günter Rote. Sequences With Subword Complexity 2n , 1994 .
[21] Anatoly M. Vershik,et al. Adic models of ergodic transformations, spectral theory, substitutions, and related topics , 1992 .
[22] Julien Leroy,et al. S -adic conjecture and Bratteli diagrams , 2012, 1210.1311.
[23] Jacques Justin,et al. Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..
[24] Julien Leroy. Some improvements of the S-adic conjecture , 2012, Adv. Appl. Math..
[25] 橋本 武久,et al. Simon Stevin「簿記論」の原型 , 2006 .
[26] Gérard Rauzy,et al. Échanges d'intervalles et transformations induites , 1979 .
[27] Sébastien Ferenczi,et al. Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.
[28] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[29] Julien Cassaigne. Special Factors of Sequences with Linear Subword Complexity , 1995, Developments in Language Theory.