Molecular simulation of the Joule–Thomson inversion curve of hydrogen sulphide

The complete Joule–Thomson inversion curve for hydrogen sulphide is determined via molecular simulations in adiabatic ensembles. In addition to NpH Monte Carlo simulations, two new versions of the density-of-states simulations are applied for smoothly scanning relevant thermodynamic ranges. With the use of realistic site–site intermolecular potential models the calculations yield good agreement with the accessible experimental data.

[1]  K. Gubbins,et al.  Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations , 2003 .

[2]  M. Neumann The dielectric constant of water. Computer simulations with the MCY potential , 1985 .

[3]  M. Lísal,et al.  Direct molecular-level Monte Carlo simulation of Joule—Thomson processes , 2003 .

[4]  R. J. Wolf,et al.  Monte Carlo simulations at constant chemical potential and pressure , 1993 .

[5]  Roland Span,et al.  Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids , 2003 .

[6]  Ray,et al.  Unified treatment of adiabatic ensembles. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[7]  Erich A. Müller,et al.  Molecular simulation of the Joule-Thomson inversion curve of carbon dioxide , 1999 .

[8]  David M. Heyes,et al.  Computer simulation and equation of state study of the Boyle and inversion temperature of simple fluids , 1992 .

[9]  Gaurav Arya,et al.  Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: applications , 2002 .

[10]  T. Kristóf,et al.  Effective Intermolecular Potential for Fluid Hydrogen Sulfide , 1997 .

[11]  R. Eppenga,et al.  Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets , 1984 .

[12]  Q. Yan,et al.  Fast calculation of the density of states of a fluid by Monte Carlo simulations. , 2003, Physical review letters.

[13]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[14]  Philippe Ungerer,et al.  Prediction of thermodynamic derivative properties of fluids by Monte Carlo simulation , 2001 .

[15]  Shyamal K. Nath,et al.  Molecular Simulation of Vapor−Liquid Phase Equilibria of Hydrogen Sulfide and Its Mixtures with Alkanes , 2003 .

[16]  K. Gubbins,et al.  Accurate CO2 Joule-Thomson inversion curve by molecular simulations , 2002 .

[17]  Erich A. Müller,et al.  Molecular Simulation of Joule–Thomson Inversion Curves , 1999 .

[18]  W. Wagner,et al.  Equations of State for Technical Applications. III. Results for Polar Fluids , 2003 .

[19]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  F. Escobedo,et al.  Simulation of Isoenthalps and Joule-Thomson Inversion Curves of Pure Fluids and Mixtures , 2001 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Athanassios Z Panagiotopoulos,et al.  Generalization of the Wang-Landau method for off-lattice simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  C. Brooks Computer simulation of liquids , 1989 .

[24]  E. A. Müller,et al.  Joule-Thomson Inversion Curves by Molecular Simulation , 1997 .

[25]  B. Rumpf,et al.  Prediction of the vapor–liquid phase equilibrium of hydrogen sulfide and the binary system water–hydrogen sulfide by molecular simulation , 2002 .