Gold nanoarray deposited using alternating current for emission rate-manipulating nanoantenna

We have proposed an easy and controllable method to prepare highly ordered Au nanoarray by pulse alternating current deposition in anodic aluminum oxide template. Using the ultraviolet–visible-near-infrared region spectrophotometer, finite difference time domain, and Green function method, we experimentally and theoretically investigated the surface plasmon resonance, electric field distribution, and local density of states enhancement of the uniform Au nanoarray system. The time-resolved photoluminescence spectra of quantum dots show that the emission rate increased from 0.0429 to 0.5 ns−1 (10.7 times larger) by the existence of the Au nanoarray. Our findings not only suggest a convenient method for ordered nanoarray growth but also prove the utilization of the Au nanoarray for light emission-manipulating antennas, which can help build various functional plasmonic nanodevices.PACS82.45.Yz, 78.47.jd, 62.23.Pq

[1]  S. Maier,et al.  Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability , 2012, Nature Communications.

[2]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[3]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[4]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[5]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[6]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[7]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[8]  F. Romanato,et al.  Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates , 2012, Nanotechnology.

[9]  S. Kawata,et al.  Subwavelength colour imaging with a metallic nanolens , 2008 .

[10]  Weidong Ruan,et al.  Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[11]  A. Kildishev,et al.  Gold nanorod arrays as plasmonic cavity resonators. , 2008, ACS nano.

[12]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[13]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[14]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[15]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[16]  Chad A Mirkin,et al.  Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. , 2006, Angewandte Chemie.

[17]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[18]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[19]  Zhang-Kai Zhou,et al.  Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. , 2011, Nano letters.

[20]  Harald Giessen,et al.  Three-Dimensional Plasmon Rulers , 2011, Science.

[21]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[22]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[23]  L. Novotný,et al.  Antennas for light , 2011 .

[24]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[25]  Hai Zhu,et al.  Graphene-enabled silver nanoantenna sensors. , 2012, Nano letters.

[26]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[27]  Wei Zhang,et al.  Dynamically tuning emission band of CdSe/ZnS quantum dots assembled on Ag nanorod array: plasmon-enhanced Stark shift. , 2011, Optics express.

[28]  G. Wurtz,et al.  Optical nonlocalities and additional waves in epsilon-near-zero metamaterials , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[29]  T. Veres,et al.  New application of AAO template: a mold for nanoring and nanocone arrays. , 2006, Journal of the American Chemical Society.

[30]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[31]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[32]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[33]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[34]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[35]  A. Polman,et al.  Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition. , 2012, ACS nano.

[36]  Ququan Wang,et al.  Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region. , 2007, Nano letters.

[37]  Optical Transmission Properties and Electric Field Distribution of Interacting 2D Silver Nanorod Arrays , 2008 .

[38]  Xiang Zhang,et al.  Spotlight on Plasmon Lasers , 2011, Science.

[39]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[40]  Mu-Tian Cheng,et al.  Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter. , 2008, Optics letters.

[41]  Sang Bok Lee,et al.  Nanotubular metal-insulator-metal capacitor arrays for energy storage. , 2009, Nature nanotechnology.

[42]  Ququan Wang,et al.  Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging. , 2010, ACS nano.

[43]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[44]  Li Zhou,et al.  Sublinear and superlinear photoluminescence from Nd doped anodic aluminum oxide templates loaded with Ag nanowires. , 2008, Optics express.

[45]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[46]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[47]  F. García-Vidal,et al.  Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. , 2010, Nano letters.