Plant centromeric retrotransposons: a structural and cytogenetic perspective

[1]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[2]  J. Macas,et al.  Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing , 2010, BMC Plant Biology.

[3]  H. Kanamori,et al.  Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure. , 2009, The Plant journal : for cell and molecular biology.

[4]  Jiming Jiang,et al.  Structure and evolution of plant centromeres. , 2009, Progress in molecular and subcellular biology.

[5]  Takeshi Urano,et al.  Synthetic Heterochromatin Bypasses RNAi and Centromeric Repeats to Establish Functional Centromeres , 2009, Science.

[6]  T. Schmidt,et al.  Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain , 2009, Chromosome Research.

[7]  R. O’Neill,et al.  A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres , 2009, Chromosoma.

[8]  V. Moulton,et al.  High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families , 2008, BMC Genomics.

[9]  O. Pisarenko,et al.  Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). , 2008, The Plant journal : for cell and molecular biology.

[10]  J. Macas,et al.  Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes , 2008, Chromosome Research.

[11]  A. Moya,et al.  Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis , 2008, BMC Evolutionary Biology.

[12]  M. Morgante,et al.  Characterization and chromosomal organization of satellite DNA sequences in Picea abies. , 2008, Genome.

[13]  W. Jin,et al.  Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres , 2008, Chromosoma.

[14]  Sean R. Eddy,et al.  A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation , 2008, PLoS Comput. Biol..

[15]  Daniel F Voytas,et al.  Chromodomains direct integration of retrotransposons to heterochromatin. , 2008, Genome research.

[16]  Takeshi Urano,et al.  Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres , 2008, Science.

[17]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[18]  Andrés Moya,et al.  The Gypsy Database (GyDB) of mobile genetic elements , 2008, Nucleic Acids Res..

[19]  G. Presting,et al.  Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity , 2008, Molecular Genetics and Genomics.

[20]  Claude W dePamphilis,et al.  Conservation and divergence of microRNAs in Populus , 2007, BMC Genomics.

[21]  Pavel Neumann,et al.  Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula , 2007, BMC Genomics.

[22]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[23]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[24]  R. Hannan,et al.  Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. , 2007, Genome research.

[25]  Jiming Jiang,et al.  The Centromeric Retrotransposons of Rice Are Transcribed and Differentially Processed by RNA Interference , 2007, Genetics.

[26]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[27]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[28]  J. Bennetzen,et al.  Plant centromere organization: a dynamic structure with conserved functions. , 2007, Trends in genetics : TIG.

[29]  Gerhard Wanner,et al.  CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley , 2007, Chromosoma.

[30]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[31]  S. Henikoff,et al.  Centromeres put epigenetics in the driver's seat. , 2006, Trends in biochemical sciences.

[32]  Eduard Kejnovsky,et al.  Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat , 2006, Molecular Genetics and Genomics.

[33]  Wenli Zhang,et al.  Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryzarhizomatis , 2006, Molecular Genetics and Genomics.

[34]  R. Martienssen,et al.  Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats , 2005, PLoS genetics.

[35]  P. Schedl,et al.  Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. , 2005, Genes & development.

[36]  D. Kordis,et al.  Phylogenomic analysis of chromoviruses , 2005, Cytogenetic and Genome Research.

[37]  O. Panaud,et al.  LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model , 2005, Cytogenetic and Genome Research.

[38]  T. Sugiyama,et al.  Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome , 2005, Nature Genetics.

[39]  Jiming Jiang,et al.  Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. , 2005, Molecular biology and evolution.

[40]  R. Allshire,et al.  The role of heterochromatin in centromere function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  D. Kordis A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. , 2005, Gene.

[42]  Shridar Ganesan,et al.  Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. , 2005, Genes & development.

[43]  Scott A. Givan,et al.  ASRP: the Arabidopsis Small RNA Project Database , 2004, Nucleic Acids Res..

[44]  M. Murata,et al.  Characterization of CENH3 and centromere-associated DNA sequences in sugarcane , 2005, Chromosome Research.

[45]  J. Macas,et al.  PIGY, a new plant envelope-class LTR retrotransposon , 2005, Molecular Genetics and Genomics.

[46]  C. Topp,et al.  Centromere-encoded RNAs are integral components of the maize kinetochore. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  V. Pereira Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome , 2004, Genome Biology.

[48]  Dan Nettleton,et al.  Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae , 2004, Genome Biology.

[49]  M. Oshimura,et al.  Dicer is essential for formation of the heterochromatin structure in vertebrate cells , 2004, Nature Cell Biology.

[50]  J. Doležel,et al.  Isolation of Chromosomes from Picea abies and their Analysis by Flow Cytometry , 2004, Biologia Plantarum.

[51]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[52]  D. Kordis,et al.  Evolutionary genomics of chromoviruses in eukaryotes. , 2004, Molecular biology and evolution.

[53]  K. Keith,et al.  The rapidly evolving field of plant centromeres. , 2004, Current opinion in plant biology.

[54]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[55]  James A. Birchler,et al.  Heterochromatic Silencing and HP1 Localization in Drosophila Are Dependent on the RNAi Machinery , 2004, Science.

[56]  I. Arkhipova Transposable Elements in the Animal Kingdom , 2001, Molecular Biology.

[57]  R. Swennen,et al.  Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas , 1998, Biologia Plantarum.

[58]  T. Volpe,et al.  RNA interference is required for normal centromere function infission yeast , 2004, Chromosome Research.

[59]  M. Lodhi,et al.  Nuclear DNA content of Vitis species, cultivars, and other genera of the Vitaceae , 2004, Theoretical and Applied Genetics.

[60]  Wen-Hsiung Li,et al.  Dating the Monocot–Dicot Divergence and the Origin of Core Eudicots Using Whole Chloroplast Genomes , 2004, Journal of Molecular Evolution.

[61]  P. Bastin,et al.  TbAGO1, an Argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei , 2003, BMC Biology.

[62]  Jiming Jiang,et al.  A molecular view of plant centromeres. , 2003, Trends in plant science.

[63]  I. Schubert,et al.  DNA and proteins of plant centromeres. , 2003, Current opinion in plant biology.

[64]  A. Meister,et al.  Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. , 2003, The Plant journal : for cell and molecular biology.

[65]  Jia Liu,et al.  Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. , 2003, Genetics.

[66]  John B. Anderson,et al.  CDD: a curated Entrez database of conserved domain alignments , 2003, Nucleic Acids Res..

[67]  B. Samuelsson,et al.  Dicer is required for chromosome segregation and gene silencing in fission yeast cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  C. Topp,et al.  Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3 , 2002, The Plant Cell Online.

[69]  A. Dejean,et al.  Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α , 2002, EMBO reports.

[70]  F. Blattner,et al.  Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003079. , 2002, The Plant Cell Online.

[71]  J. Wöstemeyer,et al.  Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution , 2002, Current Genetics.

[72]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[73]  T. Jenuwein,et al.  Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component , 2002, Nature Genetics.

[74]  S. Brown,et al.  Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies , 2002, Theoretical and Applied Genetics.

[75]  M. Batzer,et al.  Mammalian retroelements. , 2002, Genome research.

[76]  G. Presting,et al.  Sequence organization of barley centromeres. , 2001, Nucleic acids research.

[77]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[78]  J. Macas,et al.  Molecular and cytogenetic analysis of repetitive DNA in pea (pisum sativum L.). , 2001, Genome.

[79]  J. Heslop-Harrison,et al.  Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. , 2001, Molecular biology and evolution.

[80]  K. Fukui,et al.  A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes , 2001, Molecular Genetics and Genomics.

[81]  M. Francki Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). , 2001, Genome.

[82]  C. Desel,et al.  The large-scale organization of the centromeric region in Beta species. , 2001, Genome research.

[83]  O. Morozova,et al.  [Expression of the NS1 gene of tick-borne encephalitis virus in gram-negative bacteria from the mouse nasopharynx]. , 2001, Molekuliarnaia biologiia.

[84]  F. Tremblay,et al.  Different classes of retrotransposons in coniferous spruce species. , 2000, Genome.

[85]  G. May,et al.  Identification and chromosomal localization of the monkey retrotransposon in Musa sp. , 2000, Molecular and General Genetics MGG.

[86]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[87]  E. Ohtsubo,et al.  Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. , 1999, Genes & genetic systems.

[88]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[89]  T. Eickbush,et al.  Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR Retrotransposons , 1999, Journal of Virology.

[90]  S. Jackson,et al.  Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. , 1998, Genetics.

[91]  G. Presting,et al.  A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. , 1998, The Plant journal : for cell and molecular biology.

[92]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[93]  A. Schulman,et al.  Gypsy-like retrotransposons are widespread in the plant kingdom. , 1998, The Plant journal : for cell and molecular biology.

[94]  Michael Gribskov,et al.  Combining evidence using p-values: application to sequence homology searches , 1998, Bioinform..

[95]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[96]  J. Bennetzen,et al.  The contributions of retroelements to plant genome organization, function and evolution. , 1996, Trends in microbiology.

[97]  R Staden,et al.  The staden sequence analysis package , 1996, Molecular biotechnology.

[98]  Jane A. Langdale,et al.  In situ Hybridization , 1994 .

[99]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[100]  R. Aubin,et al.  Simplified high throughput protocol for northern hybridization. , 1993, Nucleic acids research.

[101]  H. Hirochika,et al.  Ty1-copia group retrotransposons as ubiquitous components of plant genomes. , 1993, Idengaku zasshi.

[102]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[103]  Eugene W. Myers,et al.  Optimal alignments in linear space , 1988, Comput. Appl. Biosci..