Purification of conchocelis of Neoporphyra haitanensis by the method of dominant Bacteria enrichment comprehensive treatment

[1]  Rahul Kumar,et al.  Germplasm Conservation: Instrumental in Agricultural Biodiversity—A Review , 2021, Sustainability.

[2]  D. Joshi,et al.  Genetic resources: Collection, characterization, conservation, and documentation , 2021, Millets and Pseudo Cereals.

[3]  Juanjuan Chen,et al.  Isolation and identification of Vibrio mediterranei 117-T6 as a pathogen associated with yellow spot disease of Pyropia (Bangiales, Rhodophyta) , 2020 .

[4]  Chen Juanjuan,et al.  Antibacterial effect of antibiotics combination in Pyropia haitanensis , 2020 .

[5]  S. Barrento,et al.  Cultivation of early life history stages of Porphyra dioica from the British Isles , 2019, Journal of Applied Phycology.

[6]  Yan-wei Shi,et al.  Microbial community assembly in detergent wastewater treatment bioreactors: Influent rather than inoculum source plays a more important role. , 2019, Bioresource technology.

[7]  T. Thomas,et al.  Phaeobacter inhibens controls bacterial community assembly on a marine diatom. , 2019, FEMS microbiology ecology.

[8]  James G. Mitchell,et al.  Bacterial community structure in the Bohai Strait provides insights into organic matter niche partitioning , 2018, Continental Shelf Research.

[9]  Alison G. Smith,et al.  Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti , 2017, Journal of Applied Phycology.

[10]  Juying Yan,et al.  Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta) , 2017, Proceedings of the National Academy of Sciences.

[11]  Jan P. Meier-Kolthoff,et al.  Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats , 2017, The ISME Journal.

[12]  H. Maske,et al.  The Vitamin B1 and B12 Required by the Marine Dinoflagellate Lingulodinium polyedrum Can be Provided by its Associated Bacterial Community in Culture , 2016, Front. Microbiol..

[13]  P. Keeling,et al.  Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean , 2016, The ISME Journal.

[14]  Atsushi Kouzuma,et al.  Exploring the potential of algae/bacteria interactions. , 2015, Current opinion in biotechnology.

[15]  H. Oh,et al.  Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. , 2015, Bioresource technology.

[16]  H. Oh,et al.  Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction , 2014 .

[17]  Elena Litchman,et al.  Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. , 2013, Ecology letters.

[18]  Y. Zhang,et al.  The Sex and Sex Determination in Pyropia haitanensis (Bangiales, Rhodophyta) , 2013, PloS one.

[19]  S. Egan,et al.  Epibacterium ulvae gen. nov., sp. nov., epibiotic bacteria isolated from the surface of a marine alga. , 2013, International journal of systematic and evolutionary microbiology.

[20]  S. Dobretsov,et al.  The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms , 2012, Front. Microbio..

[21]  Wu Xiao-kai Study on the axenic culture and application of Porphyra haitanensisthallus , 2012 .

[22]  P. Kroth,et al.  PROTOCOLS FOR THE REMOVAL OF BACTERIA FROM FRESHWATER BENTHIC DIATOM CULTURES 1 , 2009, Journal of phycology.

[23]  P. Vandamme,et al.  Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. , 2008, International journal of systematic and evolutionary microbiology.

[24]  L. Gram,et al.  Phaeobacter and Ruegeria Species of the Roseobacter Clade Colonize Separate Niches in a Danish Turbot (Scophthalmus maximus)-Rearing Farm and Antagonize Vibrio anguillarum under Different Growth Conditions , 2008, Applied and Environmental Microbiology.

[25]  T. Thomas,et al.  Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. , 2008, Current opinion in microbiology.

[26]  O. Zemb,et al.  Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. , 2008, Environmental microbiology.

[27]  J. A. Thomson,et al.  Plants, germplasm, genebanks, and intellectual property: principles, options, and management. , 2007 .

[28]  Seong-Yun Jeong,et al.  Bacillamide, a Novel Algicide from the Marine Bacterium, Bacillus sp. SY‐1, Against the Harmful Dinoflagellate, Cochlodinium polykrikoides. , 2004 .

[29]  Yong-Ki Hong,et al.  A procedure for axenic isolation of the marine microalga Isochrysis galbana from heavily contaminated mass cultures , 2002, Journal of Applied Phycology.

[30]  D. Kirchman The ecology of Cytophaga-Flavobacteria in aquatic environments. , 2002, FEMS microbiology ecology.

[31]  M. Fingerman,et al.  Cryopreservation of marine algae: applications in biotechnology. , 2000 .

[32]  H. Oh,et al.  NOTE ESTABLISHMENT OF AXENIC CULTURES OF ANABAENA FLOS‐AQUAE AND APHANOTHECE NIDULANS (CYANOBACTERIA) BY LYSOZYME TREATMENT , 1999 .

[33]  N. Saga,et al.  Cryopreservation of the conchocelis of the marine alga Porphyra yezoensis Ueda (Rhodophyta) in liquid nitrogen , 1993 .

[34]  J. Peeters,et al.  A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton , 1988 .

[35]  F. M. Patrick The use of membrane filtration and Marine Agar 2216E to enumerate marine heterotrophic bacteria , 1978 .

[36]  Roderick Hunt,et al.  Relative growth-rate: its range and adaptive significance in a local flora. , 1975 .