Modelling large-scale halo bias using the bispectrum

We study the relation between the density distribution of tracers for large-scale struc- ture and the underlying matter distribution - commonly termed bias - in theCDM framework. In particular, we examine the validity of the local model of biasing at quadratic order in the matter density. This model is characterized by parameters b1 and b2. Using an ensemble of N-body simulations, we apply several statistical meth- ods to estimate the parameters. We measure halo and matter fluctuations smoothed on various scales. We find that, whilst the fits are reasonably good, the parameters vary with smoothing scale. We argue that, for real-space measurements, owing to the mixing of wavemodes, no smoothing scale can be found for which the parameters are independent of smoothing. However, this is not the case in Fourier space. We measure halo and halo-mass power spectra and from these construct estimates of the effective large-scale bias as a guide for b1. We measure the configuration dependence of the halo bispectra Bhhh and reduced bispectra Qhhh for very large-scale k-space triangles. From this data we constrain b1 and b2, taking into account the full bispectrum covariance matrix. Using the lowest-order perturbation theory, we find that for Bhhh the best-fit parameters are in reasonable agreement with one another as the triangle scale is var- ied; although, the fits become poor as smaller scales are included. The same is true for Qhhh. The best-fit values were found to depend on the discreteness correction. This led us to consider halo-mass cross-bispectra. The results from these statistics supported our earlier findings. We then developed a test to explore whether the inconsistency in the recovered bias parameters could be attributed to missing higher-order corrections in the models. We prove that low-order expansions are not sufficiently accurate to model the data, even on scales k1 � 0.04hMpc 1 . If robust inferences concerning bias are to be drawn from future galaxy surveys, then accurate models for the full nonlinear bispectrum and trispectrum will be essential.

[1]  J. Fry The Minimal Power Spectrum: Higher Order Contributions , 1994 .

[2]  U. Seljak,et al.  Impact of scale dependent bias and nonlinear structure growth on the integrated Sachs-Wolfe effect: Angular power spectra , 2009, 0905.2408.

[3]  S. Rey,et al.  Coupling of Modes of Cosmological Mass Density Fluctuations , 1986 .

[4]  U. Seljak,et al.  Scale-dependent bias induced by local non-Gaussianity: a comparison to N-body simulations , 2008, 0811.2748.

[5]  J. Fry,et al.  Skewness in large-scale structure and non-Gaussian initial conditions , 1994 .

[6]  J. Frieman,et al.  Constraints on galaxy bias, matter density, and primordial non-Gaussianity from the PSCz galaxy redshift survey. , 2000, Physical review letters.

[7]  Bispectrum and Nonlinear Biasing of Galaxies: Perturbation Analysis, Numerical Simulation, and SDSS Galaxy Clustering , 2006, astro-ph/0609740.

[8]  Y. Jing,et al.  DETERMINE THE GALAXY BIAS FACTORS ON LARGE SCALES USING THE BISPECTRUM METHOD , 2009, 0907.0282.

[9]  Roman Scoccimarro Transients from initial conditions: a perturbative analysis , 1998 .

[10]  R. Smith,et al.  What do cluster counts really tell us about the Universe , 2011, 1106.1665.

[11]  Masanori Sato,et al.  RE-CAPTURING COSMIC INFORMATION , 2010, 1008.0349.

[12]  U. Seljak,et al.  Primordial non-Gaussianity in the bispectrum of the halo density field , 2010, 1011.1513.

[13]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[14]  B. Joachimi,et al.  Bispectrum covariance in the flat-sky limit , 2009, 0907.2901.

[15]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[16]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .

[17]  R. Scoccimarro The Bispectrum: From Theory to Observations , 2000, astro-ph/0004086.

[18]  P. Norberg,et al.  The real-space clustering of luminous red galaxies around z<0.6 quasars in the Sloan Digital Sky Survey , 2008, 0802.2105.

[19]  L. Verde,et al.  Large-scale bias in the Universe: bispectrum method , 1997, astro-ph/9706059.

[20]  T. Matsubara Nonlinear Perturbation Theory Integrated with Nonlocal Bias, Redshift-space Distortions, and Primordial Non-Gaussianity , 2011, 1102.4619.

[21]  P.Norberg,et al.  Statistical Analysis of Galaxy Surveys-II. The 3-point galaxy correlation function measured from the 2dFGRS , 2005, astro-ph/0506249.

[22]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[23]  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[24]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[25]  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[26]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[27]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[28]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[29]  M. Manera,et al.  Large-scale bias and the inaccuracy of the peak-background split , 2009, 0906.1314.

[30]  M. Rees,et al.  Physical mechanisms for biased galaxy formation , 1987, Nature.

[31]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[32]  R. Smith,et al.  Analytic model for the bispectrum of galaxies in redshift space , 2007, 0712.0017.

[33]  M. Kamionkowski,et al.  Two ways of biasing galaxy formation , 2000, astro-ph/0005544.

[34]  F. Marin THE LARGE-SCALE THREE-POINT CORRELATION FUNCTION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES , 2010, 1011.4530.

[35]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[36]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[37]  A. Heavens,et al.  Clipping the cosmos: the bias and bispectrum of large scale structure. , 2011, Physical review letters.

[38]  E. Komatsu,et al.  The bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and non-linear galaxy bias , 2007, 0705.0343.

[39]  R. Smith Covariance of cross-correlations: towards efficient measures for large-scale structure , 2008, 0810.1960.

[40]  M. Giavalisco,et al.  The Clustering Properties of Lyman Break Galaxies at Redshift z ~ 3 , 2001, astro-ph/0107447.

[41]  The non-linear redshift-space power spectrum of galaxies , 1998, astro-ph/9808016.

[42]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[43]  A. Connolly,et al.  THREE-POINT CORRELATION FUNCTIONS OF SDSS GALAXIES: LUMINOSITY AND COLOR DEPENDENCE IN REDSHIFT AND PROJECTED SPACE , 2010, 1007.2414.

[44]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[45]  Y. P. Jing Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004 .

[46]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[47]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[48]  C. Baugh,et al.  Statistical analysis of galaxy surveys – II. The three-point galaxy correlation function measured from the 2dFGRS , 2005 .

[49]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[50]  K. Koyama,et al.  Scale dependence of halo bispectrum from non-Gaussian initial conditions in cosmological N-body simulations , 2009, 0911.4768.

[51]  E. Vishniac Why weakly non-linear effects are small in a zero-pressure cosmology , 1983 .

[52]  C. Porciani,et al.  Testing standard perturbation theory and the Eulerian local biasing scheme against N-body simulations , 2011, 1101.1520.

[53]  O. Hahn,et al.  Halo mass function and scale-dependent bias from N-body simulations with non-Gaussian initial conditions , 2008, 0811.4176.

[54]  E. Sefusatti One-loop perturbative corrections to the matter and galaxy bispectrum with non-Gaussian initial conditions , 2009, 0905.0717.

[55]  Second-Order Power Spectrum and Nonlinear Evolution at High Redshift , 1993, astro-ph/9311070.

[56]  Sasaki,et al.  Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields. , 1992, Physical review. D, Particles and fields.

[57]  Biasing and the distribution of dark matter haloes , 1998, astro-ph/9808138.

[58]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[59]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[60]  J. Frieman,et al.  The Bispectrum of IRAS Redshift Catalogs , 2001 .

[61]  R. Juszkiewicz On the evolution of cosmological adiabatic perturbations in the weakly non-linear regime , 1981 .

[62]  J. Frieman,et al.  Nonlinear Evolution of the Bispectrum of Cosmological Perturbations , 1997, astro-ph/9704075.

[63]  Comparison of cosmological Boltzmann codes: Are we ready for high precision cosmology? , 2003, astro-ph/0306052.

[64]  High-order correlations of peaks and haloes: a step towards understanding galaxy biasing , 1996, astro-ph/9603039.

[65]  P. Coles Galaxy formation with a local bias , 1993 .

[66]  Joshua A. Frieman,et al.  The Bispectrum as a Signature of Gravitational Instability in Redshift Space , 1998, astro-ph/9808305.

[67]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[68]  A. Szalay,et al.  REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING , 2009, 0903.4693.

[69]  M. Manera,et al.  The local bias model in the large-scale halo distribution , 2009, 0912.0446.

[70]  Systematic effects in the sound horizon scale measurements , 2006, astro-ph/0605594.

[71]  Sebastian Pueblas,et al.  Cosmology and the Bispectrum , 2006 .

[72]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[73]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[74]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[75]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.