The Porous Medium Equation

dynamics. We have arrived at an interesting concept, seeing solutions as continuous curves moving around in an infinite-dimensional metric space X (here, the function space L1(Ω)). Viewing solutions as continuous curves in a general space is the starting point of the abstract theory of differential equations, a way that we will travel quite often. In the so-called Abstract Dynamics it is typical to forget the variable x in the notation and look at the map t 7→ u(t) ∈ X, where u(t) is the abbreviated form for u(·, t). Remarks. (1) Note that the theorem allows to define the value u(t) of a limit solution (in particular, of a weak solution) u at any time t > 0 as a well-defined element of L1(Ω). Actually, in many cases, as when Φ is superlinear and f is bounded, it is an element of L∞(Ω). (2) If u0 and f are bounded the initial regularity is better. In that case the initial data are taken in the Lp sense: ũ(t) → ũ(0) in Lp(Ω), for every p 0; if u0 is continuous, then the convergence takes place uniformly in x as t → 0, see Section 7.5.1. (3) Unfortunately, there are no equivalent L1 estimates for the Dirichlet Problem with nonhomogeneous data g 6= 0. We end this subsection with a simple but very useful consequence. Corollary 6.3 Let u be a limit solution with data u0 ∈ L1(Ω) and f ∈ L1(Q). If t1 > 0, then ũ(x, t) = u(x, t + t1) is the limit solution with data ũ0(x) = u(x, t1) and forcing term f(x, t) = f(x, t + t1). This important result is immediate for the approximations. We leave the details to the reader. Remark. Let us note that any concept of limit solution depends on the type of admissible approximations and on the functional setting in which limits are taken. The definition we propose applies in the L1 setting. If needed, these solutions will be called L1-limit solutions. For an extension see Section 6.6. 6.2 Theory of very weak solutions The continuous dependence with respect to the L1-norm is a powerful property. It has allowed us to extend the existence result for weak solutions of the preceding section and

[1]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[2]  D. Aronson,et al.  Renormalization study of two-dimensional convergent solutions of the porous medium equation , 1999, patt-sol/9908006.

[3]  S. Lunel,et al.  Order structures and the heat equation , 1997 .

[4]  J. Vázquez,et al.  Regularity of solutions and interfaces of a generalized porous medium equation inRN , 1991 .

[5]  Kazuo Kobayasi The equivalence of weak solutions and entropy solutions of nonlinear degenerate second-order equations , 2003 .

[6]  J. Nash,et al.  PARABOLIC EQUATIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Evans,et al.  Continuity of the temperature in the two-phase Stefan problem , 1983 .

[8]  G I Barenblatt Self-similar intermediate asymptotics for nonlinear degenerate parabolic free-boundary problems that occur in image processing , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  V. V. Pukhnachov,et al.  Evolution Equations and Lagrangian Coordinates , 1997 .

[10]  J. Carrillo,et al.  Fine Asymptotics for Fast Diffusion Equations , 2003 .

[11]  B. Perthame,et al.  The rosseland approximation for the radiative transfer equations , 1987 .

[12]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[13]  Josephus Hulshof,et al.  The Dipole solution for the porous medium equation in several space dimensions , 1991 .

[14]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[15]  M. Ughi,et al.  On the behaviour as t → ∞ of the solutions of the Cauchy problem for certain nonlinear parabolic equations , 1987 .

[16]  J. Vázquez,et al.  The regularity of solutions of reaction-diffusion equations via Lagrangian coordinates , 1996 .

[17]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[18]  L. Schwartz Radon measures on arbitrary topological spaces and cylindrical measures , 1973 .

[19]  Philip Rosenau,et al.  Propagation of thermal waves in an inhomogeneous medium , 1981 .

[20]  D. Aronson,et al.  A selfsimilar solution to the focusing problem for the porous medium equation , 1993, European Journal of Applied Mathematics.

[21]  J. Crank Free and moving boundary problems , 1984 .

[22]  J. Vázquez An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .

[23]  Thomas G. Kurtz Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics , 1973 .

[24]  李幼升,et al.  Ph , 1989 .

[25]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[26]  Mark A. Peletier,et al.  Disappearing interfaces in nonlinear diffusion , 1997 .

[27]  Fernando Quirós,et al.  Asymptotic behaviour of the porous media equation in an exterior domain , 1999 .

[28]  Haim Brezis,et al.  A numerical method for solving the problem $u_t - \Delta f (u) = 0$ , 1979 .

[29]  L. A. Peletier,et al.  The cauchy problem for an equation in the theory of infiltration , 1976 .

[30]  D. Widder Positive temperatures on an infinite rod , 1944 .

[31]  E. Davies,et al.  One-parameter semigroups , 1980 .

[32]  Monotone perturbations of the laplacian inL1(RN) , 1982 .

[33]  J. Vázquez,et al.  Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction , 2004 .

[34]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[35]  M. Slemrod,et al.  Asymptotic behavior of nonlinear contraction semigroups , 1973 .

[36]  L. Peletier,et al.  Nonlinear diffusion in population genetics , 1977 .

[37]  E. Zuazua,et al.  COMPLEXITY OF LARGE TIME BEHAVIOUR OF EVOLUTION EQUATIONS WITH BOUNDED DATA , 2002 .

[38]  N. Igbida Stabilization for degenerate diffusion with absorption , 2003 .

[39]  J. Vázquez,et al.  Sets of admissible initial data for porous-medium equations with absorption , 2002 .

[40]  L. Peletier,et al.  Similarity profiles of flows through porous media , 1971 .

[41]  The asymptotic profile of solutions of degenerate diffusion equations , 1986 .

[42]  J. Vázquez,et al.  Geometrical properties of the solutions of one-dimensional nonlinear parabolic equations , 1995 .

[43]  Stefan Thurner,et al.  Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion , 2005 .

[44]  J. Vázquez Behaviour of the velocity of one-dimensional flows in porous media , 1984 .

[45]  A nonlinear oblique derivative boundary value problem for the heat equation: Analogy with the porous medium equation , 2002 .

[46]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[47]  Juan Luis Vázquez,et al.  Asymptotic behaviour of solutions of the porous medium equation with changing sign , 1991 .

[48]  D. A. Barry,et al.  An analytical solution for critical withdrawal of layered fluid through a line sink in a porous medium , 1997, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[49]  I I Danilyuk,et al.  On the Stefan problem , 1985 .

[50]  Draining of Liquid from a Well into a Porous Medium , 2000 .

[51]  The Asymptotic Behaviour of Solutions of a Porous Medium Equation with Bounded Measurable Coefficients , 1997 .

[52]  Jürgen Moser,et al.  A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations , 1960 .

[53]  Finite extinction time for nonlinear parabolic equations with nonlinear mixed boundary data , 1998 .

[54]  J. Buckmaster Viscous sheets advancing over dry beds , 1977, Journal of Fluid Mechanics.

[55]  Numerical methods with interface estimates for the porous medium equation , 1987 .

[56]  C. Bennett,et al.  Interpolation of operators , 1987 .

[57]  L. Peletier On the existence of an interface in nonlinear diffusion processes , 1974 .

[58]  J. Vázquez,et al.  Maximal viscosity solutions of the modified porous medium equation and their asymptotic behaviour , 1996, European Journal of Applied Mathematics.

[59]  J. Vázquez,et al.  Focusing solutions for the $p$-Laplacian evolution equation , 1997, Advances in Differential Equations.

[60]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[61]  Michiel Bertsch,et al.  A System of Degenerate Parabolic Equations from Plasma Physics: The Large Time Behavior , 2000, SIAM J. Math. Anal..

[62]  Fernando Quirós,et al.  Asymptotic behaviour of the porous media equation in domains with holes , 2007 .

[63]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[64]  H. Kreiss,et al.  C∞-Regularity for the porous medium equation , 1986 .

[65]  S. Bonafede,et al.  Finite speed of propagation for the porous media equation , 1998 .

[66]  A. Pazy The Lyapunov method for semigroups of nonlinear contractions in Banach spaces , 1981 .

[67]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[68]  O. Oleinik,et al.  QUASI-LINEAR SECOND-ORDER PARABOLIC EQUATIONS WITH MANY INDEPENDENT VARIABLES , 1961 .

[69]  W. Okrasinski,et al.  On the percolation of water from a cylindrical reservoir into the surrounding soil , 1978 .

[70]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[71]  J. R. Philip General Method of Exact Solution of the Concentration?Dependent Diffusion Equation , 1960 .

[72]  G. I. Barenblatt,et al.  A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow , 1993 .

[73]  Ron Kimmel,et al.  From High Energy Physics to Low Level Vision , 1997, Scale-Space.

[74]  Marco Di Francesco,et al.  Intermediate Asymptotics Beyond Homogeneity and Self-Similarity: Long Time Behavior for ut = Δϕ(u) , 2006 .

[75]  J. Vázquez,et al.  Fundamental Solutions and Asymptotic Behaviour for the p-Laplacian Equation , 1988 .

[76]  P. Daskalopoulos,et al.  Regularity of the free boundary for the porous medium equation , 1998 .

[77]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[78]  K. Hoellig,et al.  Regularity of the free boundary for the porous medium equation , 1984 .

[79]  Carsten Ebmeyer,et al.  Regularity in Sobolev spaces for the fast diffusion and the porous medium equation , 2005 .

[80]  William I. Newman,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. I , 1984 .

[81]  Solutions of the One-Dimensional Porous Medium Equation are Determined by Their Free Boundary , 1990 .

[82]  Juan Luis Vázquez,et al.  Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium , 1983 .

[83]  Binheng Song,et al.  Fundamental Solution of the Anisotropic Porous Medium Equation , 2005 .

[84]  L. Evans,et al.  IRREVERSIBILITY AND HYSTERESIS FOR A FORWARD–BACKWARD DIFFUSION EQUATION , 2004 .

[85]  H. Schlichting Boundary Layer Theory , 1955 .

[86]  The diffusive limit for Carleman-type kinetic models , 2005 .

[87]  R. Hamilton,et al.  The free boundary for the N-dimensional porous medium equation , 1997 .

[88]  D. Aronson,et al.  Regularity of Flows in Porous Media: A Survey , 1988 .

[89]  G. Talenti,et al.  Elliptic equations and rearrangements , 1976 .

[90]  P. Jamet,et al.  A Finite Difference Approach to Some Degenerate Nonlinear Parabolic Equations , 1971 .

[91]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  J. R. Philip Numerical solution of equations of the diffusion type with diffusivity concentration-dependent , 1955 .

[93]  Study of self-similarity for the fast-diffusion equation , 2003 .

[94]  L. Peletier A necessary and sufficient condition for the existence of an interface in flows through porous media , 1974 .

[95]  Luis A. Caffarelli,et al.  How an Initially Stationary Interface Begins to Move in Porous Medium Flow , 1983 .

[96]  Morton E. Gurtin,et al.  On the diffusion of biological populations , 1977 .

[97]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[98]  Dipole solutions for viscous gravity currents: theory and experiments , 2003, Journal of Fluid Mechanics.

[99]  On the uniformization of the solutions of the porous medium equation inRN , 1984 .

[100]  David E. Edmunds,et al.  Nonlinear elliptic equations , 1974 .

[101]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[102]  Donald G. Aronson,et al.  Limit behaviour of focusing solutions to nonlinear diffusions , 1998 .

[103]  Lawrence E. Payne,et al.  Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time , 1974 .

[104]  A. L. Amadori,et al.  SINGULAR FREE BOUNDARY PROBLEM FROM IMAGE PROCESSING , 2005 .

[105]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[106]  L. Evans Application of Nonlinear Semigroup Theory to Certain Partial Differential Equations , 1978 .

[107]  J. Vázquez New selfsimilar solutions of the porous medium equation and the theory of solutions of changing sign , 1990 .

[108]  Victor A. Galaktionov,et al.  Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[109]  Non-Negative Solutions to Fast Diffusions , 1988 .

[110]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[111]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[112]  P. Rosenau,et al.  Nonlinear thermal evolution in an inhomogeneous medium , 1982 .

[113]  Juan Luis Vázquez,et al.  The Cauchy problem for the inhomogeneous porous medium equation , 2006, Networks Heterog. Media.

[114]  James G. Berryman,et al.  Nonlinear Diffusion Problem Arising in Plasma Physics , 1978 .

[115]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[116]  B. Perthame Mathematical tools for kinetic equations , 2004 .

[117]  D. Aronson,et al.  Regularity Propeties of Flows Through Porous Media , 1969 .

[118]  C. Villani Topics in Optimal Transportation , 2003 .

[119]  Avner Friedman,et al.  The asymptotic behavior of gas in an -dimensional porous medium , 1980 .

[120]  B. Fiedler,et al.  Connecting orbits in scalar reaction diffusion equations , 1988 .

[121]  José A. Carrillo,et al.  Asymptotic Complexity in Filtration Equations , 2007 .

[122]  Sergei I. Shmarev,et al.  Interfaces in multidimensional diffusion equations with absorption terms , 2003 .

[123]  J. King Approximate solutions to a nonlinear diffusion equation , 1988 .

[124]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[125]  Padrón Victor,et al.  SOBOLEV REGULARIZATION OF A NONLINEAR ILL-POSED PARABOLIC PROBLEM AS A MODEL FOR AGGREGATING POPULATIONS , 1998 .

[126]  J. Hulshof,et al.  Intermediate asymptotics of the porous medium equation with sign changes , 2001, Advances in Differential Equations.

[127]  C. Longmire,et al.  Elementary Plasma Physics , 1963 .

[128]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[129]  N. Igbida The mesa-limit of the porous-medium equation and the Hele-Shaw problem , 2002, Differential and Integral Equations.

[130]  M. Langlais,et al.  Stabilization of solutions of nonlinear and degenerate evolution equations , 1985 .

[131]  Juan Luis Vázquez The interfaces of one-dimensional flows in porous media , 1983 .

[132]  D. Aronson,et al.  Focusing of an elongated hole in porous medium flow , 2001 .

[133]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[134]  Lower bound estimates and separable solutions for homogeneous equations of evolution in Banach space , 1982 .

[135]  J. R. Philip Flow in porous media , 1970 .

[136]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[137]  L. Caffarelli,et al.  The initial trace of a solution of the porous medium equation , 1983 .

[138]  Propriétés de compacité de l'opérateur de Green généralisé pour l'équation des milieux poreux , 1989 .

[139]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[140]  M. Crandall An Introduction to Evolution Governed by Accretive Operators , 1976 .

[141]  Giuseppe Toscani,et al.  A central limit theorem for solutions of the porous medium equation , 2005 .

[142]  Ugur G. Abdulla,et al.  Well-posedness of the Dirichlet problem for the non-linear diffusion equation in non-smooth domains , 2004 .

[143]  L. Evans Differentiability of a nonlinear semigroup in L1 , 1977 .

[144]  E. DiBenedetto,et al.  Hölder estimates of solutions of singular parabolic equations with measurable coefficients , 1992 .

[145]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[146]  J. Vázquez,et al.  Concavity of solutions of the porous medium equation , 1987 .

[147]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[148]  P. Bénilan,et al.  Equations d'évolution dans un espace de Banach quelconque et applications , 1972 .

[149]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[150]  B. Gilding Improved theory for a nonlinear degenerate parabolic equation , 1989 .

[151]  Sigurd B. Angenent,et al.  The zero set of a solution of a parabolic equation. , 1988 .

[152]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[153]  J. King,et al.  Self-similar behaviour for the equation of fast nonlinear diffusion , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[154]  Victor A. Galaktionov,et al.  Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications , 2004 .

[155]  Processus associés à l'équation des milieux poreux , 1996 .

[156]  D. Aronson,et al.  Non-axial self-similar hole filling for the porous medium equation , 2001 .

[157]  G. I. Barenblatt,et al.  Nonlinear Diffusion and Image Contour Enhancement , 2003, math/0302349.

[158]  D. Sattinger On the total variation of solutions of parabolic equations , 1969 .

[159]  P. Painlevé,et al.  Mémoire sur la transformation des équations de la Dynamique , 1894 .

[160]  A. Friedman,et al.  Regularity of the Free Boundary for the One-Dimensional Flow of Gas in a Porous Medium , 1979 .

[161]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[162]  M. Gandarias Potential symmetries of a porous medium equation , 1996 .

[163]  J. Vázquez,et al.  A well posed problem in singular Fickian diffusion , 1990 .

[164]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[165]  Ugur G. Abdulla,et al.  On the Dirichlet Problem for the Nonlinear Diffusion Equation in Non-smooth Domains , 2001 .

[166]  J. Vázquez Nonexistence of solutions for nonlinear heat equations of fast-diffusion type , 1992 .

[167]  Victor A. Galaktionov,et al.  A Stability Technique for Evolution Partial Differential Equations , 2009 .

[168]  J. Vázquez,et al.  The Pressure Equation in the fast diffusion range , 2003 .

[169]  H. Brezis,et al.  Accretive sets and differential equations in Banach spaces , 1970 .

[170]  S. Angenent,et al.  The focusing problem for the Eikonal equation , 2003 .

[171]  Sigurd B. Angenent,et al.  The focusing problem for the radially symmetric porous medium equation , 1995 .

[172]  C. Kenig,et al.  Non-negative solutions of theo porous medium eqation , 1984 .

[173]  Francisco Bernis,et al.  A very singular solution for the dual porous medium equation and the asymptotic behaviour of general solutions. , 1993 .

[174]  M. Portilheiro Weak solutions for equations defined by accretive operators II: relaxation limits , 2003 .

[175]  Juan Luis Vázquez,et al.  Geometrical properties of solutions of the porous medium equation for large times , 2003 .

[176]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[177]  L. A. Peletier,et al.  Large time behaviour of solutions of the porous medium equation in bounded domains , 1981 .

[178]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[179]  The initial trace of a solution of a porous medium equation with bounded measurable coefficients , 1998 .

[180]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[181]  N. Igbida,et al.  A degenerate diffusion problem with dynamical boundary conditions Diffusion problem with dynamical boundary conditions , 2002 .

[182]  P. Raviart Sur la résolution et l'approximation de certaines équations paraboliques non linéaires dégénérées , 1967 .

[183]  P. Bénilan,et al.  Singular limit of changing sign solutions of the porous medium equation , 2003 .

[184]  Tien-Chang Lee Applied Mathematics in Hydrogeology , 1998 .

[185]  Inwon C. Kim Uniqueness and Existence Results on the Hele-Shaw and the Stefan Problems , 2003 .

[186]  J. Cole,et al.  Similarity methods for differential equations , 1974 .

[187]  N. Krylov,et al.  A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS , 1981 .

[188]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[189]  Juan Luis Vázquez,et al.  Darcy's Law and the Theory of Shrinking Solutions of Fast Diffusion Equations , 2003, SIAM J. Math. Anal..

[190]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[191]  Hong Zhang,et al.  Withdrawal of layered fluid through a line sink in a porous medium , 1996, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[192]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[193]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[194]  J. King Surface-concentration-dependent nonlinear diffusion , 1992, European Journal of Applied Mathematics.

[195]  J. Carrillo,et al.  Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic Problems , 1999 .

[196]  An elliptic-parabolic free boundary problem: continuity of the interface , 1987 .

[197]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[198]  Luis A. Caffarelli,et al.  Interfaces with a corner point in one-dimensional porous medium flow , 1985 .

[199]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .

[200]  Victor A. Galaktionov,et al.  Asymptotics of the Fast-Diffusion Equation with Critical Exponent , 2000, SIAM J. Math. Anal..

[201]  J. Vázquez,et al.  The Porous Medium Equation as a Finite-speed Approximation to a Hamilton-Jacobi Equation , 1987 .

[202]  Sigurd Angenent Analyticity of the interface of the porous media equation after the waiting time , 1988 .

[203]  Tai-Ping Liu Hyperbolic and viscous conservation laws , 2000, CBMS-NSF regional conference series in applied mathematics.

[204]  L. Véron,et al.  Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of Emden equations , 1993 .

[205]  T. Nanbu,et al.  Some Degenerate Nonlinear Parabolic Equations , 1984 .

[206]  David Hoff,et al.  A linearly implicit finite-difference scheme for the one-dimensional porous medium equation , 1985 .

[207]  Karl Nickel,et al.  Gestaltaussagen über Lösungen parabolischer Differentialgleichungen. , 1962 .

[208]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[209]  C. Holland,et al.  Evolution of a stable profile for a class of nonlinear diffusion equations. II , 1978 .

[210]  J. Vázquez,et al.  The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane , 1996, Advances in Differential Equations.

[211]  M. Moussaoui,et al.  RÉGULARITÉ DES SOLUTIONS DE L'EQUATION DES MILIEUX POREUX EN UNE DIMENSION D'ESPACE , 1988 .

[212]  C. J. Duijn,et al.  On a class of similarity solutions of the equation ut(|u|m-1ux)x with m -1 , 1988 .

[213]  J. Vázquez,et al.  Asymptotic behaviour of a generalized Burgers' equation , 1999 .

[214]  The Cauchy problem for the non-linear filtration equation in an inhomogeneous medium , 1990 .

[215]  Sigurd Angenent Local existence and regularity for a class of degenerate parabolic equations , 1988 .

[216]  L. A. Peletier,et al.  Asymptotic Behavior of Solutions of the Porous Media Equation , 1971 .

[217]  J. Vázquez,et al.  Anomalous exponents in nonlinear diffusion , 1993 .

[218]  Zhuoqun Wu,et al.  Nonlinear Diffusion Equations , 2002 .

[219]  Luis A. Caffarelli,et al.  A free-boundary problem for the heat equation arising in flame propagation , 1995 .

[220]  Van Duijn,et al.  Transverse dispersion from an originally sharp fresh–salt interface caused by shear flow , 1986 .

[221]  J. U. Kim,et al.  On the stochastic porous medium equation , 2006 .

[222]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[223]  S. Kamenomostskaya Similar solutions and the asymptotics of filtration equations , 1976 .

[224]  J. P. Lasalle The stability of dynamical systems , 1976 .

[225]  D. Andreucci,et al.  Large Time Behavior of Solutions to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary , 2001 .

[226]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[227]  M. Bonforte,et al.  Asymptotics of the porous media equation via Sobolev inequalities , 2005 .

[228]  G. I. Barenblatt,et al.  A new free boundary problem for unsteady flows in porous media , 1998, European Journal of Applied Mathematics.

[229]  J. Vázquez Hyperbolic Aspects in the Theory of the Porous Medium Equation , 1987 .

[230]  Paul E. Sacks,et al.  The initial and boundary value problem for a class of degenerate parabolic equations , 1983 .

[231]  D. Aronson,et al.  Regularity Properties of Flows Through Porous Media: A Counterexample , 1970 .

[232]  V. Barbu Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .

[233]  Sergei I. Shmarev,et al.  Interfaces in Solutions of Diffusion-absorption Equations in Arbitrary Space Dimension , 2005 .

[234]  J. Vázquez,et al.  Viscosity solutions for quasilinear degenerate parabolic equations of porous medium type , 2005 .

[235]  D. Hilhorst,et al.  The interface between regions where u 0 in the porous medium equation , 1991 .

[236]  M. Gurtin,et al.  A Coordinate Transformation for the Porous Media Equation that Renders the Free-Boundary Stationary. , 1984 .

[237]  L. Caffarelli,et al.  C1,α regularity of the free boundary for the N-dimensional porous media equation , 1990 .

[238]  S. Superiore,et al.  On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients , 1986 .

[239]  Vincenzo Vespri,et al.  Current issues on singular and degenerate evolution equations , 2002 .

[240]  M. Bertsch,et al.  Regularity results for an elliptic-parabolic free boundary problem , 1986 .

[241]  John R. King,et al.  Integral results for nonlinear diffusion equations , 1991 .

[242]  Giuseppe Toscani,et al.  Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .

[243]  M. Crandall,et al.  SomeL1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions , 1988 .

[244]  J. Hulshof Similarity Solutions of the Porous Medium Equation with Sign Changes , 1991 .

[245]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[246]  N. Wolanski,et al.  Monotone flows in N-dimensional partially saturated porous media: Lipschitz-continuity of the interface , 1988 .

[247]  J. Vázquez Symmetrization and Mass Comparison for Degenerate Nonlinear Parabolic and Related Elliptic Equations , 2005 .

[248]  Juan Luis Vázquez,et al.  Asymptotic behaviour for the porous medium equation posed in the whole space , 2003 .

[249]  The Relation Between the Porous Medium and the Eikonal Equations in Several Space Dimensions. , 1987 .

[250]  C1,n Regularity of interfaces for solutions of the parabolic p-laplacian equation , 1999 .

[251]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[252]  Yun-guang Lu Hölder estimates of solutions to a degenerate diffusion equation , 2001 .

[253]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[254]  E. DiBenedetto,et al.  On the singular equation β(u)t=Δu , 1995 .

[255]  R. E. Grundy Similarity solutions of the nonlinear diffusion equation , 1979 .

[256]  David Hoff,et al.  An Interface Tracking Algorithm for the Porous Medium Equation. , 1984 .

[257]  B. Gilding Holder continuity of solutions of parabolic equations , 1976 .

[258]  Karl Oelschläger,et al.  Large systems of interacting particles and the porous medium equation , 1990 .

[259]  P. L. Sachdev Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems , 2000 .

[260]  Eduard Feireisl,et al.  Admissible solutions for a class of nonlinear parabolic problems with non-negative data , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[261]  J. King EXACT SOLUTIONS TO SOME NONLINEAR DIFFUSION EQUATIONS , 1989 .

[262]  D. Aronson,et al.  Intermediate asymptotics for convergent viscous gravity currents , 1995 .

[263]  D. Hill,et al.  Similarity solutions for nonlinear diffusion — further exact solutions , 1990 .

[264]  L. Peletier,et al.  On a class of similarity solutions of the porous media equation II , 1976 .

[265]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[266]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[267]  M Muskat,et al.  THE FLOW OF HOMOGENEOUS FLUIDS THROUGH POROUS MEDIA: ANALOGIES WITH OTHER PHYSICAL PROBLEMS , 1937 .

[268]  Francisco Bernis,et al.  Source type solutions of a fourth order nonlinear degenerate parabolic equation , 1992 .

[269]  A. S. Kalashnikov The propagation of disturbances in problems of non-linear heat conduction with absorption , 1974 .

[270]  P. Sacks A singular limit problem for the porous medium equation , 1989 .

[271]  L. Caffarelli,et al.  Optimal Regularity for One-Dimensional Porous Medium Flow , 1986 .

[272]  M. Portilheiro Weak solutions for equations defined by accretive operators. I , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[273]  Willi Jäger,et al.  On Solutions to Nonlinear Reaction–Diffusion–Convection Equations with Degenerate Diffusion , 2001 .

[274]  The Number of Peaks of Nonnegative Solutions to Some Nonlinear Degenerate Parabolic Equations , 1996 .

[275]  A positivity property of solutions of nonlinear diffusion equations , 1984 .

[276]  Barry F. Knerr,et al.  The porous medium equation in one dimension , 1977 .

[277]  J. King Asymptotic results for nonlinear outdiffusion , 1994, European Journal of Applied Mathematics.

[278]  Josephus Hulshof,et al.  Self-similar solutions of the second kind for the modified porous medium equation , 1994, European Journal of Applied Mathematics.

[279]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[280]  J. C. Menéndez,et al.  Renormalized entropy solutions of scalar conservation laws. , 2002 .

[281]  LARGE TIME BEHAVIOR OF SOLUTIONS TO SOME DEGENERATE PARABOLIC EQUATIONS , 2001 .

[282]  L. A. Peletier,et al.  A class of similarity solutions of the nonlinear diffusion equation , 1977 .

[283]  Giuseppe Toscani,et al.  WASSERSTEIN METRIC AND LARGE-TIME ASYMPTOTICS OF NONLINEAR DIFFUSION EQUATIONS , 2005 .

[284]  Paul Sacks,et al.  Continuity of solutions of a singular parabolic equation , 1983 .

[285]  S. Howison,et al.  Applied Partial Differential Equations , 1999 .

[286]  Barry F. Knerr,et al.  The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension , 1979 .

[287]  D. Aronson,et al.  Self-similarity in the post-focussing regime in porous medium flows , 1996, European Journal of Applied Mathematics.

[288]  D. Aronson The porous medium equation , 1986 .

[289]  Lambertus A. Peletier,et al.  Asymptotic Behaviour near Finite-Time Extinction for the Fast Diffusion Equation , 1997 .

[290]  M. Gandarias Nonclassical symmetries of a porous medium equation with absorption , 1997 .

[291]  J. Vázquez Regularity of solutions and interfaces of the porous medium equation via local estimates , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[292]  D. Aronson,et al.  Regularity properties of flows through porous media: The interface , 1970 .

[293]  E. D. Benedetto Regularity results for the porous media equation , 1979 .

[294]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[295]  A. Friedman,et al.  Hölder estimates for nonlinear degenerate parabolic sytems. , 1985 .

[296]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[297]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[298]  William P. Ziemer,et al.  Interior and boundary continuity of weak solutions of degenerate parabolic equations , 1982 .

[299]  Avner Friedman,et al.  Mildly nonlinear parabolic equations with application to flow of gases through porous media , 1960 .

[300]  S. Kamenomostskaya,et al.  The asymptotic behaviour of the solution of the filtration equation , 1973 .

[301]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[302]  R. Showalter,et al.  Implicit Degenerate Evolution Equations and Applications , 1981 .

[303]  J. Vázquez,et al.  Lipschitz Continuity o f Solutions and Interfaces of the N-Dimensional Porous Medium Equation , 1985 .

[304]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[305]  M. Bertsch,et al.  A class of degenerate diffusion equations with a singular nonlinear term , 1983 .

[306]  Avner Friedman,et al.  Continuity of the density of a gas flow in a porous medium , 1979 .

[307]  D. Widder The heat equation , 1975 .

[308]  A. M. Meirmanov,et al.  The Stefan Problem , 1992 .

[309]  C. Duyn On the Diffusion of Immiscible Fluids in Porous Media , 1979 .

[310]  C. Villani,et al.  Optimal Transportation and Applications , 2003 .

[311]  H. D. Conway,et al.  The Lubrication of Short, Flexible Journal Bearings , 1977 .

[312]  Weak solutions of the porous medium equation , 1993 .

[313]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[314]  J. Carrillo Entropy Solutions for Nonlinear Degenerate Problems , 1999 .

[315]  D. Schwendeman Nonlinear diffusion of impurities in semiconductors , 1990 .

[316]  J. King Exact similarity solutions to some nonlinear diffusion equations , 1990 .

[317]  Amy Novick-Cohen,et al.  Stable patterns in a viscous diffusion equation , 1991 .

[318]  L. Véron,et al.  Local vanishing properties of solutions of elliptic and parabolic quasilinear equations , 1985 .

[319]  W. Rudin Real and complex analysis , 1968 .

[320]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[321]  R. E. Marshak,et al.  Effect of Radiation on Shock Wave Behavior , 1958 .

[322]  John Ockendon,et al.  “Waiting-time” Solutions of a Nonlinear Diffusion Equation , 1982 .

[323]  Constantine M. Dafermos,et al.  Asymptotic Behavior of Solutions of Evolution Equations , 1978 .

[324]  W. Smith The propagation and basal solidification of two-dimensional and axisymmetric viscous gravity currents , 2004 .

[325]  Non-Negative Solutions of Generalized Porous Medium Equations , 1986 .

[326]  P. Daskalopoulos The Cauchy Problem for Variable Coefficient Porous Medium Equations , 1997 .

[327]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[328]  J. Hyman,et al.  Plasma diffusion across a magnetic field , 1986 .

[329]  L. A. Peletier,et al.  Stabilization of solutions of a degenerate nonlinear diffusion problem , 1982 .

[330]  Edward W. Larsen,et al.  Asymptotic analysis of nonlinear Marshak waves , 1980 .

[331]  Henry P. McKean,et al.  The central limit theorem for Carleman’s equation , 1975 .

[332]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.

[333]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .

[334]  E. Benedetto Continuity of weak solutions to certain singular parabolic equations , 1982 .

[335]  Michael Röckner,et al.  Weak solutions to stochastic porous media equations , 2004 .

[336]  T. Nakaki,et al.  Numerical approach to the waiting time for the one-dimensional porous medium equation , 2003 .

[337]  J. Vázquez,et al.  Asymptotic behaviour for an equation of superslow diffusion in a bounded domain , 1994 .

[338]  M. A. Herrero On a class of nonlinear degenerate parabolic equations , 1982 .

[339]  R. Kersner Nonlinear Heat Conduction with Absorption: Space Localization and Extinction in Finite Time , 1983 .