Satellite SAR Data-based Sea Ice Classification: An Overview

A review of the main approaches developed for sea ice classification using satellite imagery is presented. Satellite data are the main and very often only information source for sea ice classification and charting in the remote arctic regions. The main techniques used for ice classification and ice charting in several national ice services are considered. Advantages and disadvantages of various SAR data-based methods for ice classification are analyzed. It is shown that an increase of SAR technical abilities contributes to the enhancement of sea ice classification reliability. The possible further development of satellite data-based methods for ice classification is discussed.

[1]  Andrea Baraldi,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[2]  David A Clausi,et al.  Feature extraction of dual-pol SAR imagery for sea ice image segmentation , 2012 .

[3]  C. Bertoia,et al.  Transition from research to operations: ARKTOS-a knowledge-based sea ice classification system , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[4]  M.J. Manore,et al.  Multi-polarization SAR data for operational ice monitoring , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[5]  D. Barber,et al.  C-Band Polarimetric Coherences and Ratios for Discriminating Sea Ice Roughness , 2013 .

[6]  David A. Clausi,et al.  IRGS: Image Segmentation Using Edge Penalties and Region Growing , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Thomas Busche,et al.  Sea ice monitoring by L-band SAR: an assessment based on literature and comparisons of JERS-1 and ERS-1 imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  B. Scheuchl,et al.  Classification of fully polarimetric single- and dual-frequency SAR data of sea ice using the Wishart statistics , 2005 .

[9]  R. Kwok,et al.  Sea ice type maps from Alaska Synthetic Aperture Radar Facility imagery: An assessment , 1994 .

[10]  C. Brekke,et al.  X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring , 2018 .

[11]  Mohammed Dabboor,et al.  Assessment of the High Resolution SAR Mode of the RADARSAT Constellation Mission for First Year Ice and Multiyear Ice Characterization , 2018, Remote. Sens..

[12]  Cecilia Moloney,et al.  SAR sea-ice texture classification using discrete wavelet transform based methods , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[13]  Lars Kaleschke,et al.  ERS-2 SAR image analysis for sea ice classification in the marginal ice zone , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[14]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[15]  Seiho Uratsuka,et al.  Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  M. Simila,et al.  The identification of the deformed sea ice fields from ERS-1 SAR image by wavelets , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[17]  Eric Rignot,et al.  Identification of sea ice types in spaceborne synthetic aperture radar data , 1992 .

[18]  B. Scheuchl,et al.  Automated sea ice classification using spaceborne polarimetric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[19]  Andrey V. Bogdanov Neuroinspired Architecture for Robust Classifier Fusion of Multisensor Imagery , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[20]  David A. Clausi,et al.  Operational SAR Sea-Ice Image Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[21]  M. Shokr Evaluation of second‐order texture parameters for sea ice classification from radar images , 1991 .

[22]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[23]  D. Flett,et al.  THE POTENTIAL OF CROSS-POLARIZATION INFORMATION FOR OPERATIONAL SEA ICE MONITORING , 2004 .

[24]  David A. Clausi,et al.  Automated Ice–Water Classification Using Dual Polarization SAR Satellite Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[25]  W. Dierking Sea ice classification on different spatial scales for operational and scientific use , 2013 .

[26]  Chan-Su Yang,et al.  Automatic discrimination approach of sea ice in the Arctic Ocean using Sentinel-1 Extra Wide Swath dual-polarized SAR data , 2018 .

[27]  David A. Clausi,et al.  Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[28]  T. Baltzer,et al.  The geophysical processor system at the Alaska SAR Facility , 1995 .

[29]  Juha Karvonen,et al.  C-Band Sea Ice SAR Classification Based on Segmentwise Edge Features , 2010 .

[30]  Ola M. Johannessen,et al.  Classification of Sea Ice Types in ENVISAT Synthetic Aperture Radar Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Marko Mäkynen,et al.  Open water detection from Baltic Sea ice Radarsat-1 SAR imagery , 2005, IEEE Geoscience and Remote Sensing Letters.

[32]  Simon Yueh,et al.  Application of neural networks for sea ice classification in polarimetric SAR images , 1995, IEEE Trans. Geosci. Remote. Sens..

[33]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[34]  Mohammed Dabboor,et al.  Towards sea ice classification using simulated RADARSAT Constellation Mission compact polarimetric SAR imagery , 2014 .

[35]  R. K. Raney,et al.  Discrimination of sea ice in the Labrador marginal ice zone from synthetic aperture radar image texture , 1997 .

[36]  Susanne Lehner,et al.  A Neural Network-Based Classification for Sea Ice Types on X-Band SAR Images , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  David A Clausi An analysis of co-occurrence texture statistics as a function of grey level quantization , 2002 .

[38]  Wolfgang Dierking,et al.  On the improvement of sea ice classification by means of radar polarimetry , 2004 .

[39]  David A. Clausi,et al.  Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[40]  R. Gill,et al.  Operational Detection of Sea Ice Edges and Icebergs Using SAR , 2001 .

[41]  Rasmus T. Tonboe,et al.  Classification of GreenICE SAR data using Fuzzy Screening Method , 2007 .

[42]  B. Scheuchl,et al.  Potential of RADARSAT-2 data for operational sea ice monitoring , 2004 .

[43]  Mohammed Dabboor,et al.  A new Likelihood Ratio for supervised classification of fully polarimetric SAR data: An application for sea ice type mapping , 2013 .

[44]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[45]  Ola M. Johannessen,et al.  Multisensor approach to automated classification of sea ice image data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[47]  J. Karvonen,et al.  Operational SAR-based sea ice drift monitoring over the Baltic Sea , 2012 .

[48]  David G. Barber,et al.  A comparison of second-order classifiers for SAR sea ice discrimination , 1993 .

[49]  James Maslanik,et al.  Geostatistical and Statistical Classification of Sea-Ice Properties and Provinces from SAR Data , 2016, Remote. Sens..

[50]  S. Thiria,et al.  Determination of the geophysical model function of the ERS‐1 scatterometer by the use of neural networks , 1998 .

[51]  Huadong Guo,et al.  SVM-Based Sea Ice Classification Using Textural Features and Concentration From RADARSAT-2 Dual-Pol ScanSAR Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[52]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[53]  Leen-Kiat Soh,et al.  A dynamic local thresholding technique for sea ice classification , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[54]  Robert A. Shuchman,et al.  Textural Analysis And Real-Time Classification of Sea-Ice Types Using Digital SAR Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[55]  S. Sandven,et al.  Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images , 2016 .

[56]  Hiroyuki Wakabayashi,et al.  Sea-Ice thickness retrieval in the Sea of Okhotsk using dual-polarization SAR data , 2006, Annals of Glaciology.

[57]  Robert A. Shuchman,et al.  The Discrimination Of Sea Ice Types Using Sar Backscatter Statistics , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[58]  B. Ramsay,et al.  Use of Radarsat Data in the Canadian Ice Service , 1998 .

[59]  Torbjørn Eltoft,et al.  Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts , 2013 .

[60]  Rudolf Ressel,et al.  Arctic Sea Ice Characterization Using RISAT-1 Compact-Pol SAR Imagery and Feature Evaluation: A Case Study Over Northeast Greenland , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[61]  D. Barber,et al.  SAR sea ice discrimination using texture statistics : a multivariate approach , 1991 .

[62]  John J. Yackel,et al.  Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types , 2012 .

[63]  Leen-Kiat Soh,et al.  ARKTOS: an intelligent system for SAR sea ice image classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Anja Rösel,et al.  Investigation into Different Polarimetric Features for Sea Ice Classification Using X-Band Synthetic Aperture Radar , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[65]  Juha A. Karvonen,et al.  Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Juha Karvonen,et al.  Baltic Sea Ice Concentration Estimation Using SENTINEL-1 SAR and AMSR2 Microwave Radiometer Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Juha Karvonen,et al.  A sea ice concentration estimation algorithm utilizing radiometer and SAR data , 2014 .

[68]  David A. Clausi,et al.  Operational map-guided classification of SAR sea ice imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[69]  P. D. Heermann,et al.  Classification of multispectral remote sensing data using a back-propagation neural network , 1992, IEEE Trans. Geosci. Remote. Sens..

[70]  J. A. Casey,et al.  Separability of sea ice types from wide swath C- and L-band synthetic aperture radar imagery acquired during the melt season , 2016 .

[71]  C. Bertoia,et al.  Multi-year ice concentration from RADARSAT , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[72]  Dean Flett,et al.  Sea Ice Type and Open Water Discrimination for Operational Ice Monitoring with RADARSAT-2 , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[73]  Paul W. Fieguth,et al.  Automatic Detection of the Ice Edge in SAR Imagery Using Curvelet Transform and Active Contour , 2016, Remote. Sens..

[74]  Leen-Kiat Soh,et al.  Arktos: a knowledge engineering software tool for images , 2002, Int. J. Hum. Comput. Stud..

[75]  David A Clausi,et al.  MAGIC: MAp-Guided Ice Classification System , 2010 .

[76]  Ron Kwok,et al.  Tracking of Ice Edges and Ice Floes by Wavelet Analysis of SAR Images , 1997 .

[77]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[78]  J. Yackel,et al.  Sea ice type and open water discrimination using dual co-polarized C-band SAR , 2009 .

[79]  Jie Zhang,et al.  PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform , 2015, Acta Oceanologica Sinica.

[80]  Wolfgang Dierking,et al.  Sea Ice Monitoring by Synthetic Aperture Radar , 2013 .

[81]  R. Kwok The RADARSAT Geophysical Processor System , 1998 .

[82]  L. Eriksson,et al.  Comparison of ice/water classification in Fram Strait from C- and L-band SAR imagery , 2018, Annals of Glaciology.

[83]  Mikko Lensu,et al.  Estimating the Speed of Ice-Going Ships by Integrating SAR Imagery and Ship Data from an Automatic Identification System , 2018, Remote. Sens..

[84]  Wolfgang Dierking,et al.  Mapping of Different Sea Ice Regimes Using Images From Sentinel-1 and ALOS Synthetic Aperture Radar , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[85]  Leen-Kiat Soh,et al.  A comprehensive, automated approach to determining sea ice thickness from SAR data , 1995, IEEE Trans. Geosci. Remote. Sens..

[86]  Stian Normann Anfinsen,et al.  Assessing polarimetric SAR sea-ice classifications using consecutive day images , 2015, Annals of Glaciology.