Sudoku Graphs are Integral

Sudoku graphs have only 5 or 6 distinct eigenvalues and all of them are integers. Moreover, the associated eigenspaces admit bases with entries from the set $\{0, 1, -1\}$.

[1]  Wasin So,et al.  Integral circulant graphs , 2006, Discret. Math..

[2]  Christian Elsholtz,et al.  Sudoku im Mathematikunterricht , 2007 .

[3]  Milan Nath,et al.  On the null-spaces of acyclic and unicyclic singular graphs , 2007 .

[4]  Agnes M. Herzberg,et al.  Sudoku Squares and Chromatic Polynomials , 2007 .

[5]  N. Biggs Algebraic Graph Theory: COLOURING PROBLEMS , 1974 .

[6]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[7]  Irene Sciriha Coalesced and embedded nut graphs in singular graphs , 2008, Ars Math. Contemp..

[8]  Frank Harary,et al.  On the Computational Complexity of the Forcing Chromatic Number , 2004, SIAM J. Comput..

[9]  Andries E. Brouwer,et al.  Small Integral Trees , 2008, Electron. J. Comb..

[10]  Bertram Felgenhauer,et al.  Mathematics of Sudoku I , 2006 .

[11]  Torsten Sander,et al.  On Certain Eigenspaces of Cographs , 2008, Electron. J. Comb..

[12]  Fumio Hazama,et al.  On the kernels of the incidence matrices of graphs , 2002, Discret. Math..

[13]  L. Lovász Spectra of graphs with transitive groups , 1975 .

[14]  Torsten Sander,et al.  On Simply Structured Bases of Tree Kernels , 2005 .

[15]  S. Akbari,et al.  {−1, 0, 1}-Basis for the null space of a forest , 2006 .

[16]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[17]  D. E. Rutherford XVI.—Some Continuant Determinants arising in Physics and Chemistry—II , 1952, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.