HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization

In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involving a large number of objective functions. However, the high computational effort required for hypervolume calculation has so far prevented the full exploitation of this indicator's potential; current hypervolume-based search algorithms are limited to problems with only a few objectives. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo simulation to approximate the exact hypervolume values. The main idea is not that the actual indicator values are important, but rather that the rankings of solutions induced by the hypervolume indicator. In detail, we present HypE, a hypervolume estimation algorithm for multi-objective optimization, by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only do many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. Moreover, we show how the same principle can be used to statistically compare the outcomes of different multi-objective optimizers with respect to the hypervolumeso far, statistical testing has been restricted to scenarios with few objectives. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multi-objective evolutionary algorithms. HypE is available for download at http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.

[1]  Lucas Bradstreet,et al.  Heuristics for optimizing the calculation of hypervolume for multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  Lucas Bradstreet,et al.  Updating exclusive hypervolume contributions cheaply , 2009, 2009 IEEE Congress on Evolutionary Computation.

[3]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[4]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[5]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[6]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[7]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[8]  R. Lyndon While,et al.  A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume , 2005, EMO.

[9]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[10]  Jinhua Zheng,et al.  Achieving balance between proximity and diversity in multi-objective evolutionary algorithm , 2012, Inf. Sci..

[11]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[12]  Lothar Thiele,et al.  Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization , 2003 .

[13]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[14]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[15]  Qing Yang,et al.  Novel Algorithm to Calculate Hypervolume Indicator of Pareto Approximation Set , 2007, ICIC.

[16]  B. Naujoks,et al.  Non‐monotonicity of Observed Hypervolume in 1‐Greedy S‐Metric Selection , 2013 .

[17]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[18]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[19]  Tobias Friedrich,et al.  Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects , 2008, ISAAC.

[20]  Lucas Bradstreet,et al.  Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  Eckart Zitzler,et al.  Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods , 2007, 2007 IEEE Congress on Evolutionary Computation.

[22]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[23]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[24]  Ingo Wegener,et al.  The analysis of evolutionary algorithms on sorting and shortest paths problems , 2004, J. Math. Model. Algorithms.

[25]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[26]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[27]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[28]  Sheldon H. Jacobson,et al.  A survey of ranking, selection, and multiple comparison procedures for discrete-event simulation , 1999, WSC '99.

[29]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[30]  Jürgen Branke,et al.  Multi-objective particle swarm optimization on computer grids , 2007, GECCO '07.

[31]  Lucas Bradstreet,et al.  Incrementally maximising hypervolume for selection in multi-objective evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Nicola Beume,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Gradient-based / Evolutionary Relay Hybrid for Computing Pareto Front Approximations Maximizing the S-Metric , 2007 .

[33]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[34]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[35]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[36]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[37]  Habibollah Haron,et al.  The review of multiple evolutionary searches and multi-objective evolutionary algorithms , 2013, Artificial Intelligence Review.

[38]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[39]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[40]  H. Schwefel,et al.  Approximating the Pareto Set: Concepts, Diversity Issues, and Performance Assessment , 1999 .

[41]  Tobias Friedrich,et al.  Approximation quality of the hypervolume indicator , 2013, Artif. Intell..

[42]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[43]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[44]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[45]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[46]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[47]  Matteo Nicolini,et al.  A Two-Level Evolutionary Approach to Multi-criterion Optimization of Water Supply Systems , 2005, EMO.

[48]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[49]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[50]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[51]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[52]  Junwei Lu,et al.  Many-Objective Optimization of Antenna Arrays Using an Improved Multiple-Single-Objective Pareto Sampling Algorithm , 2012, IEEE Antennas and Wireless Propagation Letters.

[53]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[54]  Dirk Thierens,et al.  Stochastic Pareto local search: Pareto neighbourhood exploration and perturbation strategies , 2012, J. Heuristics.

[55]  Jesús García,et al.  Multi-objective optimization with an adaptive resonance theory-based estimation of distribution algorithm , 2012, Annals of Mathematics and Artificial Intelligence.

[56]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[57]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[58]  Ilmar F. Santos,et al.  Evolution strategies and multi-objective optimization of permanent magnet motor , 2012, Appl. Soft Comput..

[59]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[60]  Kalyanmoy Deb,et al.  Faster Hypervolume-Based Search Using Monte Carlo Sampling , 2008, MCDM.

[61]  Luigi Barone,et al.  An evolution strategy with probabilistic mutation for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[62]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[63]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..