Direct observation of spin excitation anisotropy in the paramagnetic orthorhombic state of BaFe2−xNixAs2

We use transport and inelastic neutron scattering measurements to investigate single crystals of iron pnictide BaFe$_{2-x}$Ni$_{x}$As$_{2}$ ($x=0,0.03$), which exhibit a tetragonal-to-orthorhombic structural transition at $T_s$ and stripe antiferromagnetic order at $T_N$ ($T_s\geq T_N$). Using a tunable uniaxial pressure device, we detwin the crystals and study their transport and spin excitation properties at antiferromagnetic wave vector $S_1(1,0)$ and its 90$^\circ$ rotated wave vector $S_2(0,1)$ under different pressure conditions. We find that uniaxial pressure necessary to detwin and maintain single domain orthorhombic antiferromagnetic phase of BaFe$_{2-x}$Ni$_{x}$As$_{2}$ induces resistivity and spin excitation anisotropy at temperatures above zero pressure $T_s$. In uniaxial pressure-free detwinned sample, spin excitation anisotropy between $S_1(1,0)$ and $S_2(0,1)$ first appear in the paramagnetic orthorhombic phase below $T_s$. These results are consistent with predictions of spin nematic theory, suggesting the absence of structural or nematic phase transition above $T_s$ in iron pnictides.

[1]  Н. Грейда,et al.  17 , 2019, Magical Realism for Non-Believers.

[2]  Zhi-Xun Shen,et al.  Role of the orbital degree of freedom in iron-based superconductors , 2017, 1703.08622.

[3]  Z. Meng,et al.  Effect of Nematic Order on the Low-Energy Spin Fluctuations in Detwinned BaFe_{1.935}Ni_{0.065}As_{2}. , 2016, Physical review letters.

[4]  N. Curro,et al.  NMR Evidence for Inhomogeneous Nematic Fluctuations in BaFe_{2}(As_{1-x}P_{x})_{2}. , 2015, Physical review letters.

[5]  Huiqian Luo,et al.  Impact of uniaxial pressure on structural and magnetic phase transitions in electron-doped iron pnictides , 2015, 1507.04191.

[6]  C. Meingast,et al.  Electronic nematic susceptibility of iron-based superconductors , 2015, 1505.05120.

[7]  J. Chu,et al.  Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors , 2015, Science.

[8]  J. Niedziela,et al.  Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe1.9Ni0.1As2 , 2015, 1511.02759.

[9]  Huiqian Luo,et al.  Electronic nematic correlations in the stress free tetragonal state of BaFe$_{2-x}$Ni$_{x}$As$_{2}$ , 2015, 1507.05423.

[10]  P. Svoboda,et al.  ThALES—Three Axis Low Energy Spectroscopy for highly correlated electron systems , 2015 .

[11]  A. Sefat,et al.  Room‐Temperature Ba(Fe1−xCox)2As2 is not Tetragonal: Direct Observation of Magnetoelastic Interactions in Pnictide Superconductors , 2015, Advanced materials.

[12]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[13]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[14]  G. Tucker,et al.  Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe(0.953)Co(0.047))(2)As(2): evidence for a sharp enhancement of spin fluctuations by nematic order. , 2014, Physical review letters.

[15]  Huiqian Luo,et al.  Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe2−xNixAs2 , 2014, Science.

[16]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[17]  A. Millis,et al.  Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs , 2013, Nature Physics.

[18]  I. Fisher,et al.  Measurement of the elastoresistivity coefficients of the underdoped iron arsenide Ba(Fe0.975Co0.025)2As2 , 2013, 1306.4377.

[19]  Huiqian Luo,et al.  Avoided quantum criticality and magnetoelastic coupling in BaFe(2-x)Ni(x)As2. , 2013, Physical review letters.

[20]  E. Dagotto,et al.  Nematic state of pnictides stabilized by interplay between spin, orbital, and lattice degrees of freedom. , 2013, Physical review letters.

[21]  A. Sefat,et al.  NMR search for the spin nematic state in a LaFeAsO single crystal. , 2012, Physical review letters.

[22]  K. Hashimoto,et al.  Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2 , 2012, Nature.

[23]  J. Schmalian,et al.  Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides , 2012, 1204.3694.

[24]  J. Chu,et al.  Divergent Nematic Susceptibility in an Iron Arsenide Superconductor , 2012, Science.

[25]  M. Wang,et al.  Coexistence and competition of the short-range incommensurate antiferromagnetic order with the superconducting state of BaFe(2-x)Ni(x)As2. , 2012, Physical review letters.

[26]  G. Stewart Superconductivity in iron compounds , 2011, 1106.1618.

[27]  Z. Shen,et al.  In-plane electronic anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals , 2011, 1106.1675.

[28]  Huiqian Luo,et al.  Systematic growth of BaFe2 − xNixAs2 large crystals , 2011 .

[29]  P. McMahon,et al.  In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor , 2010, Science.

[30]  Michael J. Lawler,et al.  Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.

[31]  W. Yin,et al.  Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. , 2009, Physical review letters.

[32]  Jiansheng Wu,et al.  Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides , 2009, 0905.1704.

[33]  Markus P. Mueller,et al.  Ising and Spin orders in Iron-Based Superconductors , 2008, 0804.4293.

[34]  Jiangping Hu,et al.  Theory of electron nematic order in LaFeAsO , 2008, 0804.3843.