Selective Review of Visual Attention Models

The purpose of this chapter is both to review some of the most representative visual attention models, both theoretical and practical, that have been proposed to date, and to introduce the authors’ attention model, which has been successfully used as part of the control system of a robotic platform. The chapter has three sections: in the first section, an introduction to visual attention is given. In the second section, relevant state of art in visual attention is reviewed. This review is organised in three areas: psychological based models, connectionist models, and features-based models. In the last section, the authors’ attention model is presented. DOI: 10.4018/978-1-4666-2672-0.ch020

[1]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[2]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[3]  Dean V Buonomano,et al.  Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Antonio Fernández-Caballero,et al.  Dynamic visual attention model in image sequences , 2007, Image Vis. Comput..

[5]  Horst-Michael Groß,et al.  Camera-based gesture recognition for robot control , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[6]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. H. C. Heijden,et al.  Visual selective attention: Introductory remarks , 1986, Psychological research.

[8]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[9]  D. LaBerge,et al.  Shifting attention in visual space: tests of moving-spotlight models versus an activity-distribution model. , 1997, Journal of experimental psychology. Human perception and performance.

[10]  Carl-Johan Westelius,et al.  Focus of attention and gaze control for robot vision , 1995 .

[11]  Bijoy K. Ghosh,et al.  Bio-Inspired Networks of Visual Sensors, Neurons, and Oscillators , 2007, Proceedings of the IEEE.

[12]  Sebastian Thrun,et al.  A Gesture Based Interface for Human-Robot Interaction , 2000, Auton. Robots.

[13]  Jose Garcia-Rodriguez,et al.  Robotic Vision: Technologies for Machine Learning and Vision Applications , 2013 .

[14]  Gustavo Deco,et al.  A Neurodynamical Model of Visual Attention: Feedback Enhancement of Spatial Resolution in a Hierarchical System , 2001, Journal of Computational Neuroscience.

[15]  Hanspeter A. Mallot,et al.  Saccadic object recognition with an active vision system , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[16]  John K. Tsotsos,et al.  Attending to visual motion , 2005, Comput. Vis. Image Underst..

[17]  Leonard Uhr,et al.  Layered "Recognition Cone" Networks That Preprocess, Classify, and Describe , 1972, IEEE Transactions on Computers.

[18]  C. Eriksen,et al.  Allocation of attention in the visual field. , 1985, Journal of experimental psychology. Human perception and performance.

[19]  Eric O. Postma,et al.  SCAN: A Scalable Model of Attentional Selection , 1997, Neural Networks.

[20]  Peter J. Burt,et al.  Attention mechanisms for vision in a dynamic world , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[21]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[22]  Atsuto Maki,et al.  A computational model of depth-based attention , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  Simone Frintrop,et al.  Goal-Directed Search with a Top-Down Modulated Computational Attention System , 2005, DAGM-Symposium.

[24]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Kjell Brunnström,et al.  Active fixation for scene exploration , 1996, International Journal of Computer Vision.

[26]  Bruno A. Olshausen,et al.  A multiscale dynamic routing circuit for forming size- and position-invariant object representations , 1995, Journal of Computational Neuroscience.

[27]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[28]  Atsuto Maki,et al.  Attentional Scene Segmentation: Integrating Depth and Motion , 2000, Comput. Vis. Image Underst..

[29]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[30]  Giulio Sandini,et al.  A Foveated Retina-Like Sensor Using CCD Technology , 1989, Analog VLSI Implementation of Neural Systems.

[31]  J. Henderson Human gaze control during real-world scene perception , 2003, Trends in Cognitive Sciences.

[32]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[33]  H. Pashler,et al.  Visual attention and stimulus identification. , 1985, Journal of experimental psychology. Human perception and performance.

[34]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[35]  Antonio Fernández-Caballero,et al.  Motion features to enhance scene segmentation in active visual attention , 2006, Pattern Recognit. Lett..

[36]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[37]  Erik Blaser,et al.  Tracking an object through feature space , 2000, Nature.

[38]  Reyes Enciso,et al.  Experimenting with 3D vision on a robotic head , 1995, Robotics Auton. Syst..

[39]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[40]  Hanêne Ben-Abdallah,et al.  An Improved Lane Detection and Tracking Method for Lane Departure Warning Systems , 2013, Int. J. Comput. Vis. Image Process..

[41]  John K. Tsotsos,et al.  Detecting motion patterns via direction maps with application to surveillance , 2009, Comput. Vis. Image Underst..

[42]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Bärbel Mertsching,et al.  Data- and Model-Driven Gaze Control for an Active-Vision System , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[45]  M. Tistarelli,et al.  Direct estimation of time-to-impact from optical flow , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[46]  Thierry Pun,et al.  Attentive mechanisms for dynamic and static scene analysis , 1995 .

[47]  R Hübner,et al.  Perceiving spatially inseparable objects: evidence for feature-based object selection not mediated by location. , 1999, Journal of experimental psychology. Human perception and performance.

[48]  B. Julesz Early vision and focal attention , 1991 .

[49]  Kourosh Pahlavan,et al.  Designing an anthropomorphic head-eye system , 1996 .

[50]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[51]  A. Brakensiek,et al.  Neural networks for gesture-based remote control of a mobile robot , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[52]  Wolfgang Maass,et al.  On the Computational Power of Threshold Circuits with Sparse Activity , 2006, Neural Computation.

[53]  Rajesh P. N. Rao,et al.  Learning the Lie Groups of Visual Invariance , 2007, Neural Computation.

[54]  Dirk Walther,et al.  Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics. , 2006 .

[55]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[56]  G. Baylis,et al.  Visual attention and objects: evidence for hierarchical coding of location. , 1993, Journal of experimental psychology. Human perception and performance.