Demonstration of net gain at 1550nm in an erbium-doped polymersingle mode rib waveguide

A polymer-based waveguide optical amplifier doped with Er3+ ions has been modeled, fabricated, and characterized. Propagation losses have been measured using both cutback and Fabry-Perot methods, resulting in similar, reasonable loss values that do not exceed 1.31dBcm−1 at 1540nm. By accounting for overall propagation loss, a net gain of 1.34dB at 1540nm is demonstrated for a 1.6cm long single mode waveguide amplifier.

[1]  Sunoh Kim,et al.  Nondestructive propagation loss and facet reflectance measurements of GaAs/AlGaAs strip‐loaded waveguides , 1995 .

[2]  V. G. Truong,et al.  An hybrid organic inorganic approach to erbium-functionalized nanodots for emission in the telecom window , 2005 .

[3]  R.R.A. Syms,et al.  Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier , 2002, IEEE Photonics Technology Letters.

[4]  Morio Kobayashi,et al.  Amplification in erbium-doped silica-based planar lightwave circuits , 1992 .

[5]  W. Sohler,et al.  Loss in low-finesse Ti:LiNbO3 optical waveguide resonators , 1985 .

[6]  Pieter G. Kik,et al.  Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers , 2003 .

[7]  E.Y.B. Pun,et al.  Er/sup 3+/-Yb/sup 3+/ codoped phosphate glass waveguide amplifier using Ag/sup +/-Li/sup +/ ion exchange , 2002, IEEE Photonics Technology Letters.

[8]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[9]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[10]  Ke Liu,et al.  Erbium-doped waveguide amplifiers fabricated using focused proton beam writing , 2004 .

[11]  Hak-Seung Han,et al.  Rare-earth-doped nanocrystalline silicon: excitation and de-excitation mechanisms and implications for waveguide amplifier applications , 2001, SPIE OPTO.

[12]  Namkyoo Park,et al.  Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier , 2002 .

[13]  J. Shmulovich,et al.  8-mV threshold Er/sup 3+/-doped planar waveguide amplifier , 1996, IEEE Photonics Technology Letters.

[14]  Mario Martinelli,et al.  Erbium-doped crystalline YAG planar and ridge waveguides on quartz and sapphire substrates: deposition and material characterisation , 2001 .

[15]  R. Hierle,et al.  Erbium-doped polymer-based materials and waveguides for amplification at 1,55 μm , 2006, SPIE OPTO.

[16]  Jingdong Luo,et al.  Replica-molded electro-optic polymer Mach–Zehnder modulator , 2004 .

[17]  E. Kapon,et al.  Low‐loss single‐mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy , 1987 .

[18]  L. Mccaughan,et al.  Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping , 1997, IEEE Photonics Technology Letters.

[19]  W. Gillin,et al.  1.54 μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes , 1999 .

[20]  Stefano Taccheo,et al.  Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses , 2002 .