Volume holographic imaging in transmission geometry.

We address the performance of transmission geometry volume holograms as depth-selective imaging elements. We consider two simple implementations using holograms recorded with spherical and plane beams. We derive the point-spread function (PSF) of these systems using volume diffraction theory and use the PSF to estimate depth resolution. Furthermore, we show that appropriately designed objective optics can significantly improve the depth resolution or the working distance of plane-wave reference holographic imaging systems. These results are confirmed experimentally and demonstrated for objects with millimeter axial features, imaged from the 5- to 50-cm range.

[1]  Murali Subbarao,et al.  Depth from defocus: A spatial domain approach , 1994, International Journal of Computer Vision.

[2]  Volume holographic telescope. , 2002, Optics letters.

[3]  Demetri Psaltis,et al.  Real-time spectral imaging in three spatial dimensions. , 2002, Optics letters.

[4]  Jerome H Milgram,et al.  Computational reconstruction of images from holograms. , 2002, Applied optics.

[5]  G. Barbastathis,et al.  Axial imaging necessitates loss of lateral shift invariance. , 2001, Applied optics.

[6]  G. Barbastathis,et al.  Information content of volume holographic imaging. , 2001, Trends in biotechnology.

[7]  David J. Brady,et al.  Multidimensional tomographic imaging using volume holography , 1999, Proc. IEEE.

[8]  D J Brady,et al.  Confocal microscopy with a volume holographic filter. , 1999, Optics letters.

[9]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[10]  I. Yamaguchi,et al.  Three-dimensional microscopy with phase-shifting digital holography. , 1998, Optics letters.

[11]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[12]  D Psaltis,et al.  Shift multiplexing with spherical reference waves. , 1996, Applied optics.

[13]  D Psaltis,et al.  Shift-multiplexed holographic memory using the two-lambda method. , 1996, Optics letters.

[14]  J. Katz,et al.  Three Dimensional Velocity Measurements Using Hybrid HPIV , 1996 .

[15]  Demetri Psaltis Holographic memories , 1996, International Commission for Optics.

[16]  P B Bennett,et al.  The physiology of decompression illness. , 1995, Scientific American.

[17]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[18]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[19]  D Psaltis,et al.  Nonvolatile storage in photorefractive crystals. , 1994, Optics letters.

[20]  P. Yeh,et al.  Introduction to photorefractive nonlinear optics , 1993 .

[21]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[22]  P. Grangeat Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .

[23]  L. Norskov,et al.  A serine protease triad forms the catalytic centre of a triacylglycerol lipase , 1990, Nature.

[24]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[25]  D. Psaltis,et al.  Volume holographic interconnections with maximal capacity and minimal cross talk , 1989 .

[26]  H. Fisk Johnson,et al.  An improved method for computing a discrete Hankel transform , 1987 .

[27]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[28]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[29]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[30]  J. Goodman Introduction to Fourier optics , 1969 .

[31]  Emmett N. Leith,et al.  Holographic data storage in three-dimensional media. , 1966, Applied optics.

[32]  P. J. van Heerden,et al.  Theory of Optical Information Storage in Solids , 1963 .

[33]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[34]  D. Gabor A New Microscopic Principle , 1948, Nature.