Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons

Antibodies to Ca channels in ALS patients IgG can be demonstrated to enhance Ca current and cause cell injury and death in a motoneuron cell line in vitro. To determine whether these antibodies can alter neuronal calcium homeostasis in vivo IgG fractions from six ALS patients were injected intraperitoneally into mice, and neurons assayed by ultrastructural techniques for calcium content. After 24 h, all six ALS IgG (40 mg/animal) increased vesicle number in spinal motoneuron axon terminals, and in boutons synapsing on spinal motoneurons. Using the oxalate‐pyroantimonate technique for calcium precipitation, these antibodies produced dose‐dependent calcium increases either in axon terminal synaptic vesicles and mitochondria, or in rough endoplasmic reticulum, mitochondria, and Golgi complex of spinal motoneuron and frontal cortex pyramidal cells. ALS IgG was itself internalized and also induced neurofilament H phosphorylation. The observed changes in ultrastructure and calcium compartmentation were restricted to motoneurons; normal and disease control IgG, which did not possess antibodies enhancing calcium entry, did not exert similar effects. These data demonstrate that ALS IgG containing Ca‐channel antibodies can alter calcium homeostasis of motoneurons in vivo. © 1995 Wiley‐Liss, Inc.

[1]  R. Ike,et al.  Muscle biopsy , 1995, Current opinion in rheumatology.

[2]  E. Stefani,et al.  Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line , 1995, Annals of neurology.

[3]  V. La Bella,et al.  The role of calcium‐binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis , 1994, Annals of neurology.

[4]  K. Ren,et al.  A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord , 1994, Brain Research Reviews.

[5]  M. Lynch,et al.  Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyrus , 1994, Neuroscience.

[6]  E. Stefani,et al.  Cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Stefani,et al.  Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel α1 subunit , 1994 .

[8]  R. Llinás,et al.  IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar Purkinje cells and in isolated channel protein in lipid bilayer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Richman,et al.  Neuromuscular transmission in amyotrophic lateral sclerosis , 1993, Muscle & nerve.

[10]  C. Heizmann,et al.  Parvalbumin and calbindin D‐28k in the human motor system and in motor neuron disease , 1993, Neuropathology and applied neurobiology.

[11]  K. Ikeda,et al.  Calcium-induced translocation of synaptic vesicles to the active site , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  J. Julien,et al.  Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis , 1993, Cell.

[13]  L. Cork,et al.  Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease , 1993, Cell.

[14]  S. Brady Motor neurons and neurofilaments in sickness and in health , 1993, Cell.

[15]  Á. Párducz,et al.  Transient increase of calcium in synaptic vesicles after stimulation , 1993, Neuroscience.

[16]  E. Stefani,et al.  Serum antibodies to L-type calcium channels in patients with amyotrophic lateral sclerosis. , 1992, The New England journal of medicine.

[17]  D. Protti,et al.  Long-term neuromuscular dysfunction produced by passive transfer of amyotrophic lateral sclerosis immunoglobulins , 1992, Neurology.

[18]  P. Emson,et al.  Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis , 1992, Neuron.

[19]  K. Körtje,et al.  The application of electron spectroscopic imaging for quantification of the area fractions of calcium‐containing precipitates in nervous tissue , 1992, Journal of microscopy.

[20]  J. Rothstein,et al.  Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. , 1992, The New England journal of medicine.

[21]  D. Choi Amyotrophic lateral sclerosis and glutamate--too much of a good thing? , 1992, The New England journal of medicine.

[22]  D. Clapham,et al.  Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel , 1992, Nature.

[23]  E. Stefani,et al.  Calcium current and charge movement of mammalian muscle: action of amyotrophic lateral sclerosis immunoglobulins. , 1991, The Journal of physiology.

[24]  E. Stefani,et al.  IgG from amyotrophic lateral sclerosis affects tubular calcium channels of skeletal muscle. , 1991, The American journal of physiology.

[25]  E. Perry,et al.  The quantitative autoradiographic distribution of [3H]MK-801 binding sites in the normal human spinal cord , 1991, Brain Research.

[26]  E. Stefani,et al.  Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[28]  S. Appel,et al.  IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. , 1990, Archives of neurology.

[29]  A. Plaitakis Glutamate dysfunction and selective motor neuron degeneration inamyotrophic lateral sclerosis: A hypothesis , 1990, Annals of neurology.

[30]  S. Appel,et al.  Experimental autoimmune motoneuron disease , 1989, Annals of neurology.

[31]  E. Florey,et al.  Reversible effect of depolarization by K-propionate on sub-miniature endplate potential to bell-miniature endplate potential ratios, on miniature endplate potential frequencies and amplitudes, and on synaptic vesicle diameters and densities in frog neuromuscular junctions , 1988, Neuroscience.

[32]  G. Perry,et al.  Phosphorylation of Neurofilaments Is Altered in Amyotrophic Lateral Sclerosis , 1988, Journal of neuropathology and experimental neurology.

[33]  V. Meininger,et al.  Modifications of microtubule proteins in ALS nerve precede detectable histologic and ultrastructural changes , 1988, Neurology.

[34]  J. Wolff,et al.  Transient increase of calcium in pre-and postsynaptic organelles of rat superior cervical ganglion after tetanizing stimulation , 1987, Neuroscience.

[35]  G. Mies,et al.  Calcium in the mitochondria following brief ischemia of gerbil brain , 1987, Neuroscience Letters.

[36]  H. Stadler,et al.  Synaptic vesicles in electromotoneurones. II. Heterogeneity of populations is expressed in uptake properties; exocytosis and insertion of a core proteoglycan into the extracellular matrix. , 1987, The EMBO journal.

[37]  S. M. Chou,et al.  Fast axonal transport in amyotrophic lateral sclerosis , 1987, Neurology.

[38]  S. Appel,et al.  Amyotrophic lateral sclerosis. Associated clinical disorders and immunological evaluations. , 1986, Archives of neurology.

[39]  C. Zimmermann,et al.  Identification of a Proteoglycan Antigen Characteristic of Cholinergic Synaptic Vesicles , 1983, Journal of neurochemistry.

[40]  N. Morel,et al.  Calcium uptake by cholinergic synaptic vesicles. , 1980, Journal de physiologie.

[41]  D. Michaelson,et al.  ATP‐Stimulated Ca2+ Transport into Cholinergic Torpedo Synaptic Vesicles , 1980, Journal of neurochemistry.

[42]  V. P. Whittaker,et al.  Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: Effect of stimulation-induced transmitter release , 1980, Neuroscience.

[43]  V. P. Whittaker,et al.  Adenosine triphosphatase activity associated with purified cholinergic synaptic vesicles of Torpedo marmorata. , 1977, European journal of biochemistry.

[44]  M. De Brabander,et al.  Intranuclear microtubules in lung mast cells of guinea pigs in anaphylactic shock. , 1977, Laboratory investigation; a journal of technical methods and pathology.

[45]  P. Astrup Clinical chemistry as a medical disciple. , 1977, Scandinavian journal of clinical and laboratory investigation.

[46]  S. Younkin,et al.  An analysis of the role of calcium in facilitation at the frog neuromuscular junction , 1974, The Journal of physiology.

[47]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[48]  R. Werman,et al.  DISTRIBUTION OF SOME SYNAPTIC TRANSMITTER SUSPECTS IN CAT SPINAL CORD: GLUTAMIC ACID, ASPARTIC ACID, γ‐AMINOBUTYRIC ACID, GLYCINE, AND GLUTAMINE * , 1967, Journal of neurochemistry.

[49]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[50]  M. Charcot's Lectures on Diseases of the Nervous System , 1880, Edinburgh medical journal.

[51]  R. Burgoyne,et al.  Regulated exocytosis. , 1993, The Biochemical journal.

[52]  J. Hauw,et al.  Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. , 1992, The American journal of pathology.

[53]  R. Bauer 6 Electron Spectroscopic Imaging: An Advanced Technique for Imaging and Analysis in Transmission Electron Microscopy , 1988 .

[54]  R. Mandaro,et al.  Bioseparation by ion exchange cartridge chromatography , 1986 .

[55]  R. Rahamimoff,,et al.  Serendiptic Modulation of Transmitter Release: Extracellular Calcium Inhomogeneity , 1986 .

[56]  D. Nicholls,et al.  Intracellular calcium homeostasis. , 1986, British medical bulletin.

[57]  M. Borgers,et al.  The subcellular distribution of calcium and the effects of calcium-antagonists as evaluated with a combined oxalate-pyroantimonate technique. , 1981, Acta histochemica. Supplementband.