Low velocity impact response of fibre-metal laminates – A review

Abstract This contribution hopes to give a comprehensive review of past and current research work published on the dynamic response of fibre-metal laminates subjected to low velocity impact. The historical development of fibre-metal laminates is first reviewed in details, and notable researchers and their contributions are chronologically tabulated and reviewed. Included are also reviews on published experimental, numerical and analytical work on the low velocity impact of fibre-metal laminates. Detailed discussions on the two main groups of parameters namely geometry and material based parameters that influenced the structural response of fibre metal laminates to low-velocity impact. The review concludes with detailed discussions on the future works needed for fibre-metal laminates subjected to low velocity impact loads.

[1]  G. Chai,et al.  Low-velocity impact response of fibre–metal laminates – Experimental and finite element analysis , 2012 .

[2]  Onur Çoban,et al.  A review: Fibre metal laminates, background, bonding types and applied test methods , 2011 .

[3]  Kunigal N. Shivakumar,et al.  Prediction of low-velocity impact damage in thin circular laminates , 1985 .

[4]  Wesley J. Cantwell,et al.  Structural behaviour of fibre metal laminates subjected to a low velocity impact , 2011 .

[5]  G. Tsamasphyros,et al.  Analytical and Finite Element Modelling of Circular Glare Plates under Indentation Loading and Unloading , 2011 .

[6]  P. Irving,et al.  The response of aluminium/GLARE hybrid materials to impact and to in-plane fatigue , 2009 .

[7]  V. Lopresto,et al.  A simple mechanistic model to predict the macroscopic response of fibreglass–aluminium laminates under low-velocity impact , 2007 .

[8]  Wesley J. Cantwell,et al.  The low velocity impact response of foam-based sandwich panels , 2012 .

[9]  R. Kapania,et al.  Nonlinear static and transient finite element analysis of laminated beams , 1992 .

[10]  J. Yang,et al.  The mechanical behavior of GLARE laminates for aircraft structures , 2005 .

[11]  A. Fahr,et al.  Applications of fiber‐metal laminates , 2000 .

[12]  Jenn‐Ming Yang,et al.  The impact properties and damage tolerance and of bi-directionally reinforced fiber metal laminates , 2007 .

[13]  William James Stronge,et al.  Low velocity impact denting of HSSA lightweight sandwich panel , 2006 .

[14]  A. Giannakopoulos,et al.  Modeling of facesheet crack growth in titanium–graphite hybrid laminates, Part I , 2003 .

[15]  Jungsub Kim,et al.  Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates , 2010 .

[16]  R. Kemp,et al.  The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite , 1995 .

[17]  S. E. Yamada,et al.  Analysis of Laminate Strength and Its Distribution , 1978 .

[18]  A. Vlot,et al.  Delamination Resistance of Post-Stretched Fibre Metal Laminates , 1998 .

[19]  H. N. Narasimha Murthy,et al.  Experimental Investigation of Low-Velocity Repeated Impacts on Glass Fiber Metal Composites , 2012, Journal of Materials Engineering and Performance.

[20]  R. Benedictus,et al.  Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests , 2012 .

[21]  M. S. Fatt,et al.  Perforation of Composite Plates and Sandwich Panels under Quasi-static and Projectile Loading , 2006 .

[22]  Hyoungseock Seo,et al.  Numerical Simulation of Glass-Fiber-Reinforced Aluminum Laminates with Diverse Impact Damage , 2010 .

[23]  Yiu-Wing Mai,et al.  Effects of fibre/matrix adhesion on carbon-fibre-reinforced metal laminates—II. impact behaviour , 1998 .

[24]  Yanxiong Liu,et al.  Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates , 2010 .

[25]  S. Spearing,et al.  Delamination growth from face sheet seams in cross-ply titanium/graphite hybrid laminates , 2001 .

[26]  L. C. Pardini,et al.  A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures , 2006 .

[27]  R. Jafari,et al.  Nonlinear low-velocity impact response analysis of a radially preloaded two-directional-functionally graded circular plate: A refined contact stiffness approach , 2013 .

[28]  R. Alderliesten,et al.  Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates – An experimental impact research , 2012 .

[29]  Hurang Hu,et al.  Impact Resistance Modeling of Hybrid Laminated Composites , 1998 .

[30]  K. Malekzadeh,et al.  Dynamic response of fiber–metal laminates (FMLs) subjected to low-velocity impact , 2010 .

[31]  B. Sankar Scaling of Low-Velocity Impact for Symmetric Composite Laminates , 1992 .

[32]  Choon Chiang Foo,et al.  A modified energy-balance model to predict low-velocity impact response for sandwich composites , 2011 .

[33]  Gin Boay Chai,et al.  Low-velocity impact failure of aluminium honeycomb sandwich panels , 2008 .

[34]  L. Lv,et al.  Transverse Impact Damage and Energy Absorption of Three-Dimensional Orthogonal Hybrid Woven Composite: Experimental and FEM Simulation , 2008 .

[35]  Lorenzo Iannucci,et al.  Progressive failure modelling of woven carbon composite under impact , 2006 .

[36]  H. Nakatani,et al.  Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact , 2011 .

[37]  R. Benedictus,et al.  An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate , 2013 .

[38]  Kamran Nikbin,et al.  Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM , 2009 .

[39]  Wesley J. Cantwell,et al.  The impact resistance of polypropylene-based fibre-metal laminates , 2006 .

[40]  J. Gillespie,et al.  Finite element modeling of impact, damage evolution and penetration of thick-section composites , 2011 .

[42]  Young-Shin Lee,et al.  Response of hybrid laminated composite plates under low-velocity impact , 1997 .

[43]  G. Caprino,et al.  Low-velocity impact behaviour of fibreglass-aluminium laminates , 2004 .

[44]  J. Jang,et al.  Effect of stacking sequence on the compressive performance of impacted aramid fiber/glass fiber hybrid composite , 2000 .

[45]  G.A.O. Davies,et al.  Numerical modelling of impact damage , 1994 .

[46]  Gin Boay Chai,et al.  A model to predict low-velocity impact response and damage in sandwich composites , 2008 .

[47]  Low-velocity impact response of laminated beams subjected to initialstresses , 1985 .

[48]  S. Spearing,et al.  Modeling of facesheet crack growth in titanium–graphite hybrid laminates. Part II: Experimental results , 2003 .

[49]  Wesley J. Cantwell,et al.  Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading , 2011 .

[50]  R. Benedictus,et al.  Post-stretching induced stress redistribution in Fibre Metal Laminates for increased fatigue crack growth resistance , 2009 .

[51]  R. Benedictus,et al.  Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates , 2012, Applied Composite Materials.

[52]  G. Minak,et al.  Influence of diameter and boundary conditions on low velocity impact response of CFRP circular laminated plates , 2008 .

[53]  A. Vlot,et al.  Low-velocity impact loading: on fibre reinforced aluminium laminates (ARALL and GLARE) and other aircraft sheet materials , 1993 .

[54]  W. Cantwell,et al.  Comparison of the low and high velocity impact response of cfrp , 1989 .

[55]  Paul Straznicky,et al.  Effects of stacking sequence on the impact resistance in composite laminates — Part 1: parametric study , 1998 .

[56]  K. Malekzadeh,et al.  A NEW APPROACH TO STATIC AND DYNAMIC ANALYSIS OF COMPOSITE PLATES WITH DIFFERENT BOUNDARY CONDITIONS , 2005 .

[57]  T. M. Tan,et al.  Wave Propagation in Graphite/Epoxy Laminates Due to Impact. , 1982 .

[58]  Wesley J. Cantwell,et al.  Geometrical effects in the low velocity impact response of GFRP , 2007 .

[59]  Stephen R. Swanson,et al.  A comparison of solution techniques for impact response of composite plates , 1990 .

[60]  A. Kobayashi,et al.  Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate , 2007 .

[61]  A. Vlot,et al.  Impact Damage Resistance of Various Fibre Metal Laminates , 1997 .

[62]  S. B. Aminjikarai,et al.  A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates , 2009 .

[63]  D. Rhymer Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates , 2002 .

[64]  Z. Guan,et al.  The low-velocity impact response of fiber-metal laminates , 2011 .

[65]  G. Bikakis,et al.  Dynamic response of circular GLARE fiber—metal laminates subjected to low velocity impact , 2011 .

[66]  Robin Olsson,et al.  Mass criterion for wave controlled impact response of composite plates , 2000 .

[67]  Ik Hyeon Choi,et al.  Low-velocity impact analysis of composite laminates using linearized contact law , 2004 .

[68]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[69]  C. Sun,et al.  Characterization of impact damage in ARALL laminates , 1993 .

[70]  W. Cantwell,et al.  Investigation of Scaling Effects in Fiber—Metal Laminates , 2008 .

[71]  Jeremy Laliberte,et al.  Impact Damage in Fiber Metal Laminates, Part 1: Experiment , 2005 .

[72]  Ya-Jung Lee,et al.  Ultimate Strength and Failure Process of Composite Laminated Plates Subjected to Low-Velocity Impact , 2003 .

[73]  M. R. Khalili,et al.  Analytical Prediction of Low-velocity Impact Response of Composite Sandwich Panels using New TDOF Spring–mass–damper Model , 2006 .

[74]  S. A. Griffin,et al.  Impact response of composite laminates with a hemispherical indenter , 1991 .

[75]  Christophe Bouvet,et al.  Low velocity impact modeling in composite laminates capturing permanent indentation , 2012 .

[76]  C. Evci,et al.  An experimental investigation on the impact response of composite materials , 2012 .

[77]  Serge Abrate,et al.  Modeling of impacts on composite structures , 2001 .

[78]  Brian Falzon,et al.  Predicting low-velocity impact damage on a stiffened composite panel , 2010 .

[79]  F. Marulo,et al.  Low-velocity impact behavior of fiber metal laminates , 2011 .

[80]  Lorenzo Iannucci,et al.  A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage , 2012 .

[81]  R. de Borst,et al.  Delamination behavior of spliced Fiber Metal Laminates. Part 2. Numerical investigation , 1999 .

[82]  A. Fahr,et al.  Post-impact fatigue damage growth in fiber–metal laminates , 2002 .

[83]  S. Spearing,et al.  Fatigue damage in titanium-graphite hybrid laminates , 1998 .

[84]  Z. Hashin Analysis of Properties of Fiber Composites With Anisotropic Constituents , 1979 .

[85]  G. Chai,et al.  Effect of adhesive in sandwich panels subjected to low-velocity impact , 2011 .

[86]  G. Tsamasphyros,et al.  Analytical modeling to predict the low velocity impact response of circular GLARE fiber–metal laminates , 2013 .

[87]  J. L. Curiel Sosa,et al.  Delamination modelling of GLARE using the extended finite element method , 2012 .

[88]  Douglas S. Cairns,et al.  Transient response of graphite/epoxy and Kevlar/epoxy laminates subjected to impact , 1988 .

[89]  C. Sun,et al.  On the Impact of Initially Stressed Composite Laminates , 1985 .

[90]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[91]  John Morton,et al.  The impact resistance of composite materials — a review , 1991 .

[92]  Li Ma,et al.  Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates , 2010 .

[93]  C. Atas An Experimental Investigation on the Impact Response of Fiberglass/Aluminum Composites , 2007 .

[94]  B. Liaw,et al.  Stacking Sequence and Geometrical Effects on Low-Velocity Impact Behaviors of GLARE 5 (3/2) Fiber–Metal Laminates , 2012 .

[95]  Peter Linde,et al.  Modelling and Simulation of Fibre Metal Laminates , 2004 .

[96]  C. T. Sun,et al.  Investigation of laminated composite plates under impact dynamic loading using a three-dimensional hybrid stress finite element method , 2014 .

[97]  Gin Boay Chai,et al.  A review of low-velocity impact on sandwich structures , 2011 .

[98]  Z. Guan,et al.  Numerical modeling of the impact response of fiber-metal laminates , 2009 .

[99]  M. Richardson,et al.  Review of low-velocity impact properties of composite materials , 1996 .

[101]  A. Vlot,et al.  Development of fibre metal laminates for advanced aerospace structures , 2000 .

[102]  Wei He,et al.  Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure , 2013 .

[103]  Nam Seo Goo,et al.  Dynamic Contact Analysis of Laminated Composite Plates Under Low-Velocity Impact , 1997 .

[104]  Rakesh K. Kapania,et al.  Low-velocity impact of laminated composites using a layerwise theory , 1994 .

[105]  A. Vlot,et al.  Impact loading on fibre metal laminates , 1996 .

[106]  Dirk Vandepitte,et al.  Failure analysis of low velocity impact on thin composite laminates : Experimental and numerical approaches , 2008 .

[107]  B. Liaw,et al.  Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies , 2012 .

[108]  Jan Willem Gunnink,et al.  Fibre metal laminates : an introduction , 2001 .

[109]  Constantinos Soutis,et al.  Modelling damage evolution in composite laminates subjected to low velocity impact , 2012 .

[110]  A. Vlot,et al.  Impact properties of Fibre Metal Laminates , 1993 .

[111]  Christophe Bouvet,et al.  Low velocity impact modelling in laminate composite panels with discrete interface elements , 2009 .

[112]  John Morton,et al.  Geometrical effects in the low velocity impact response of CFRP , 1989 .

[113]  R. L. Ramkumar,et al.  Low-velocity impact response of laminated plates , 1983 .

[114]  de R René Borst,et al.  Finite element procedure for modelling fibre metal laminates , 1995 .

[115]  L. B. Vogelesang,et al.  Towards application of fibre metal laminates in large aircraft , 1999 .

[116]  Effects of shape memory alloys on low velocity impact characteristics of composite plate , 2011 .

[117]  X. Zhang,et al.  Impact damage in composite aircraft structures-experimental testing and numerical simulation , 1998 .

[118]  G. Nurick,et al.  The effect of laminate stacking sequence of CFRP filament wound tubes subjected to projectile impact , 2002 .

[119]  Eugenio Oñate,et al.  Robust design optimisation of advance hybrid (fiber–metal) composite structures ☆ , 2013 .

[120]  Pedro P. Camanho,et al.  Simulation of drop-weight impact and compression after impact tests on composite laminates , 2012 .

[121]  Wesley J. Cantwell,et al.  The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene , 2000 .

[122]  C. Sun,et al.  Indentation Law for Composite Laminates. , 1982 .

[123]  René de Borst,et al.  Numerical assessment of delamination in fibre metal laminates , 2000 .

[124]  Prasad B. Chunchu,et al.  Scaling the Non-linear Impact Response of Flat and Curved Composite Panels , 2005 .

[125]  I. Choi,et al.  Analytical and experimental studies on the low-velocity impact response and damage of composite laminates under in-plane loads with structural damping effects , 2010 .

[126]  Brian Falzon,et al.  A progressive failure model for composite laminates subjected to low velocity impact damage , 2008 .

[127]  R. Benedictus,et al.  The applicability of magnesium based Fibre Metal Laminates in aerospace structures , 2008 .

[128]  R. Benedictus,et al.  Impact resistance of fiber-metal laminates: A review , 2012 .

[129]  Hurang Hu,et al.  Effect of Cross Section Material Distribution on Impact Response of Hybrid Composites , 2002 .

[130]  S.M.R. Khalili,et al.  Analysis and optimization of smart hybrid composite plates subjected to low-velocity impact using the response surface methodology (RSM) , 2008 .

[131]  Shengqing. Zhu Composite sandwich panels subjected to impact of a foreign body , 2012 .

[132]  W. Cantwell,et al.  The fracture properties of a fibre–metal laminate based on magnesium alloy , 2005 .

[133]  Wesley J. Cantwell,et al.  Scaling Effects in the Low Velocity Impact Response of Fiber-Metal Laminates , 2008 .

[134]  S.M.R. Khalili,et al.  Low-velocity impact response of active thin-walled hybrid composite structures embedded with SMA wires , 2007 .

[135]  Reza Vaziri,et al.  Analytical Solution for Low-Velocity Impact Response of Composite Plates , 1996 .