Cyclodextrin-based supramolecular polymers.

Recently, supramolecular chemistry has been expanding to supramolecular polymer chemistry. The combination of cyclic molecules and linear polymers has provided many kinds of intriguing supramolecular architectures, such as rotaxanes and catenanes. This tutorial review overviews construction of some supramolecular architectures formed by cyclodextrins or their derivatives with guest molecules. In the first part, the construction of supramolecular structures of cyclodextrins with some polymers (polyrotaxanes) is described. In the second part, formation of supramolecular oligomers and polymers formed by cyclodextrin derivatives is described.

[1]  Y. Inoue,et al.  Molecular recognition by modified cyclodextrins. Inclusion complexation of β-cyclodextrin 6-O-monobenzoate with acyclic and cyclic hydrocarbons , 1992 .

[2]  Y. Takashima,et al.  Crystal Structure of the Complex of β-Cyclodextrin with Bithiophene and Their Oxidative Polymerization in Water , 2004 .

[3]  A. Harada Supramolecular polymers based on cyclodextrins , 2006 .

[4]  Mohammad F. Islam,et al.  Single Chain Characterization of Hydrophobically Modified Polyelectrolytes Using Cyclodextrin/Hydrophobe Complexes , 2000 .

[5]  Akira Harada,et al.  Complex formation between poly(ethylene glycol) and α-cyclodextrin , 1990 .

[6]  J. Storsberg,et al.  Cyclodextrins in Polymer Synthesis: Supramolecular Cyclodextrin Complexes of Pyrrole and 3,4-Ethylenedioxythiophene and Their Oxidative Polymerization , 2000 .

[7]  Y. Takashima,et al.  Self-threading of a poly(ethylene glycol) chain in a cyclodextrin-ring: control of the exchange dynamics by chain length. , 2006, Journal of the American Chemical Society.

[8]  A. Kaifer,et al.  Electrochemically controlled self-complexation of cyclodextrin–viologen conjugates , 1999 .

[9]  J. Rebek,et al.  Polycaps: reversibly formed polymeric capsules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. Harada,et al.  Complex formation of poly(ε-caprolactone) with cyclodextrin , 1997 .

[11]  Stoddart,et al.  Toward Daisy Chain Polymers: "Wittig Exchange" of Stoppers in , 2000, Organic letters.

[12]  Alshakim Nelson,et al.  A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. , 2004, Journal of the American Chemical Society.

[13]  Donald Voet,et al.  Biochemistry, 2nd ed. , 1995 .

[14]  A. Harada,et al.  Supramolecular polymers formed by cinnamoyl cyclodextrins , 2003 .

[15]  H. Ritter,et al.  Cyclodextrins in Polymer Synthesis: Free Radical Copolymerization of Methylated β-Cyclodextrin Complexes of Hydrophobic Monomers with N-Isopropylacrylamide in Aqueous Medium† , 2000 .

[16]  C. Rizzoli,et al.  Self-assembling of p-tert-butylcalix[4]arene into supramolecular structures using transition-metal derivatization , 1996 .

[17]  A. Harada,et al.  Complex formation between polyisobutylene and cyclodextrins: inversion of chain-length selectivity between .beta.-cyclodextrin and .gamma.-cyclodextrin , 1993 .

[18]  A. Harada,et al.  Preparation and characterization of inclusion complexes of poly(dimethylsiloxane)s with cyclodextrins , 2001 .

[19]  K. Harata,et al.  Crystal structure of 2-O-[(S)-2-hydroxypropyl]cyclomaltoheptaose. , 1991, Carbohydrate research.

[20]  Y. Sakata,et al.  The first Janus [2]rotaxane , 2000 .

[21]  T. Ueda,et al.  POLYMERIC INCLUSION COMPOUND DERIVED FROM β-CYCLODEXTRIN , 1982 .

[22]  T. Takata,et al.  Solid-State End-Capping of Pseudopolyrotaxane Possessing Hydroxy-Terminated Axle to Polyrotaxane and Its Application to the Synthesis of a Functionalized Polyrotaxane Capable of Yielding a Polyrotaxane Network , 2005 .

[23]  G. Fukuhara,et al.  Synthesis and Characterization of the First Pair of an Unlocked and a Locked Self-inclusion Complex from a Permethylated α-Cyclodextrin Derivative , 2003 .

[24]  Y. Takashima,et al.  Social self-sorting: alternating supramolecular oligomer consisting of isomers. , 2009, Journal of the American Chemical Society.

[25]  G. Wenz,et al.  Photochemical Synthesis of Polyrotaxanes from Stilbene Polymers and Cyclodextrins , 1997 .

[26]  E. W. Meijer,et al.  A selectivity-driven supramolecular polymerization of an AB monomer. , 2006, Angewandte Chemie.

[27]  A. Harada,et al.  Recognition of Alkyl Groups on a Polymer Chain by Cyclodextrins , 1997 .

[28]  A. Harada,et al.  PREPARATION AND CHARACTERIZATION OF INCLUSION COMPLEXES OF POLY(ALKYL VINYL ETHER) WITH CYCLODEXTRINS , 1998 .

[29]  Akira Harada,et al.  Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol) , 1994, Nature.

[30]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[31]  Susumu Tsuda,et al.  Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. , 2006, Chemical communications.

[32]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[33]  K. Yannakopoulou,et al.  Synthesis of 6-mono-6-deoxy-beta-cyclodextrins substituted with isomeric aminobenzoic acids. Structural characterization, conformational preferences, and self-inclusion as studied by NMR spectroscopy in aqueous solution and by X-ray crystallography in the solid state. , 2003, The Journal of organic chemistry.

[34]  Yu Liu,et al.  Supramolecular self-assemblies of beta-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel superstructures. , 2003, The Journal of organic chemistry.

[35]  A. Harada,et al.  Complex Formation of Polybutadiene with Cyclodextrins , 2001 .

[36]  Y. Takashima,et al.  Preparation and Properties of Rotaxanes Formed by Dimethyl-β-cyclodextrin and Oligo(thiophene)s with β-Cyclodextrin Stoppers , 2007 .

[37]  D. French,et al.  Studies on the Schardinger dextrins. IX. Structure of the cyclohexaamylose–iodine complex , 1959 .

[38]  A. Harada,et al.  STRUCTURES OF POLYROTAXANE MODELS , 1997 .

[39]  Y. Takashima,et al.  Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. , 2007, Journal of the American Chemical Society.

[40]  Mieczysław Maciejewski Polymerization and Copolymerization of Some Monomers as Adducts with β-Cyclodextrin , 1979 .

[41]  A. Castellan,et al.  From anthracene photodimerization to jaw photochromic materials and photocrowns , 1980 .

[42]  K. Imotani,et al.  Formation of Superstructure Composed of Modified Cyclodextrins as Molecular “Blocks” in Aqueous Solution with Host-Guest Complexation. Correlation of Chemical Structure of Modified Group with Complexation , 2001 .

[43]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[44]  Akira Harada,et al.  Sol–Gel Transition during Inclusion Complex Formation between α-Cyclodextrin and High Molecular Weight Poly(ethylene glycol)s in Aqueous Solution , 1994 .

[45]  A. Harada,et al.  Complex formation between cyclodextrin and poly(propylene glycol) , 1990 .

[46]  H. Ogino,et al.  Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .

[47]  M. Garcia‐Garibay,et al.  Studies of Naphthyl-Substituted β-Cyclodextrins. Self-Aggregation and Inclusion of External Guests , 1998 .

[48]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[49]  J. Luong,et al.  Characterization of interacting ferrocene–cyclodextrin systems and their role in mediated biosensors , 1995, Journal of molecular recognition : JMR.

[50]  M. Ghadiri,et al.  Photoswitchable Hydrogen-Bonding in Self-Organized Cylindrical Peptide Systems. , 1999, Angewandte Chemie.

[51]  A. Harada,et al.  Site-Selective Complexation of Amphiphilic Compounds by Cyclodextrins , 2000 .

[52]  A. Harada,et al.  Complex Formation between Poly(dimethylsiloxane) and Cyclodextrins: New Pseudo-Polyrotaxanes Containing Inorganic Polymers , 2000 .

[53]  Takehiko Naruoka,et al.  Regulation of Main-Chain Conformation of Permethyldecasilane by Complexation with γ-Cyclodextrin , 2003 .

[54]  U. Kolb,et al.  Supramolecular Nanocycles Comprising β-Cyclodextrin-click-Ferrocene Units: Rings of Rings of Rings. , 2010, Macromolecular rapid communications.

[55]  H. Ritter,et al.  Influence of cyclodextrin molecules on the synthesis and the thermoresponsive solution behavior of N-isopropylacrylamide copolymers with adamantyl groups in the side-chains. , 2003, Angewandte Chemie.

[56]  B. Sébille,et al.  Aqueous two phase systems from cyclodextrin polymers and hydrophobically modified acrylic polymers , 1998 .

[57]  T. Osa,et al.  Photocontrol of molecular association attained by azobenzene-modified cyclodextrin , 1991 .

[58]  S. Lincoln,et al.  An hermaphrodite [2]rotaxane: preparation and analysis of structure. , 2001, Organic letters.

[59]  J. Peet,et al.  Solid-State Complexation of Poly(Ethylene Glycol) with α−Cyclodextrin , 2005 .

[60]  A. Harada,et al.  Formation of Inclusion Complexes of Monodisperse Oligo(ethylene glycol)s with .alpha.-Cyclodextrin , 1994 .

[61]  S. Kamitori,et al.  Structural study of monosubstituted β-cyclodextrins. crystal structures of phenylthio-β-cyclodextrin and phenylsulphinyl-β- cyclodextrin and spectroscopic study of related compounds in aqueous solution , 1987 .

[62]  Jean-Pierre Sauvage,et al.  Rotaxanes as new architectures for photoinduced electron transfer and molecular motions , 1999 .

[63]  JungJong Hwa,et al.  The First Lipophilic Face-to-Face Dimers of Permethylated α-Cyclodextrin-Azobenzene Dyads through a p-Xylylene Spacer , 2000 .

[64]  A. Harada,et al.  Formation of Inclusion Complexes of Oligoethylene and Its Derivatives with α-Cyclodextrin , 1994 .

[65]  Mieczysław Maciejewski,et al.  Polymer Inclusion Compounds by Polymerization of Monomers in β-Cyclodextrin Matrix in DMF Solution , 1979 .

[66]  E. W. Meijer,et al.  Complementary quadruple hydrogen bonding in supramolecular copolymers. , 2005, Journal of the American Chemical Society.

[67]  Y. Takashima,et al.  Supramolecular Polymers Formed from β-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers , 2005 .

[68]  J. Lehn Supramolecular chemistry — Molecular information and the design of supramolecular materials , 1993 .

[69]  J. A. Semlyen Large ring molecules , 1996 .

[70]  Y. Takashima,et al.  Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrin−β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimers , 2006 .

[71]  Yu Liu,et al.  Binding ability and self-assembly behavior of linear polymeric supramolecules formed by modified beta-cyclodextrin. , 2003, Organic letters.

[72]  T. Park,et al.  A highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends. , 2005, Journal of the American Chemical Society.

[73]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[74]  E. W. Meijer,et al.  Stability and Lifetime of Quadruply Hydrogen Bonded 2-Ureido-4[1H]-pyrimidinone Dimers , 2000 .

[75]  Y. Takashima,et al.  External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. , 2007, Journal of the American Chemical Society.

[76]  M Venturi,et al.  Artificial molecular-level machines: which energy to make them work? , 2001, Accounts of chemical research.

[77]  M. Panasiewicz,et al.  Compounds of [btilde]-Cyclodextrin and Organosilicon Oligomers , 1978 .

[78]  E. Rizzarelli,et al.  Conformation for a beta-cyclodextrin monosubstituted with a cyclic dipeptide. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[79]  A. Harada,et al.  Poly(polyrotaxane): Photoreactions of 9-anthracene-capped polyrotaxane , 2003 .

[80]  A. Harada,et al.  Formation of Supramolecular Polymers Constructed by Cyclodextrins with Cinnamamide , 2004 .

[81]  A. Harada,et al.  Preparation and Characterization of Inclusion Complexes of Poly(Propylene Glycol) with Cyclodextrins , 1995 .

[82]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[83]  M. Rehahn,et al.  A Novel Synthetic Strategy toward Soluble, Well-Defined Ruthenium(II) Coordination Polymers , 1996 .

[84]  S. Lincoln,et al.  Synthesis of alpha-cyclodextrin [2]-rotaxanes using chlorotriazine capping reagents. , 2008, Organic & biomolecular chemistry.

[85]  Akira Harada,et al.  Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins. , 2008, Chemistry, an Asian journal.

[86]  Saad A. Khan,et al.  Novel Associative Polymer Networks Based on Cyclodextrin Inclusion Compounds , 2005 .

[87]  H. Inokuchi,et al.  THE GRAPHITE INTERCALATION COMPOUNDS I : THE CONDUCTIVITY OF GRAPHITE-ALKALIMETAL-HYDROGEN TERNARY SYSTEMS(Superconductivity・Intercalation) , 1979 .

[88]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[89]  Kennath A. Connors Cyclodextrins and their industrial uses: Dominique Duchêne (Editor), Editions de Santé, 19 rue Louis-le-Grand, 75002 Paris, France, 1987, 448 pages, ISBN 2-86411-019-9. , 1988 .

[90]  K. Ogawa,et al.  X-ray diffraction analysis of nonequilibrium states in crystals: observation of an unstable conformer in flash-cooled crystals. , 2004, Journal of the American Chemical Society.

[91]  D. Macartney,et al.  Self-assembling metal rotaxane complexes of .alpha.-cyclodextrin , 1992 .

[92]  V. T. D'Souza,et al.  Methods for Selective Modifications of Cyclodextrins. , 1998, Chemical reviews.

[93]  Y. Takashima,et al.  Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives , 2008 .

[94]  Leong Huat Gan,et al.  Photoregulated Sol‐Gel Transition of Novel Azobenzene‐Functionalized Hydroxypropyl Methylcellulose and Its α‐Cyclodextrin Complexes , 2004 .

[95]  J. Lehn,et al.  Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Harada,et al.  A Helical Supramolecular Polymer Formed by Host-Guest Interactions , 2005 .

[97]  K. Harata Structural Aspects of Stereodifferentiation in the Solid State. , 1998, Chemical reviews.

[98]  H. Ritter,et al.  Side-chain polyrotaxanes, 3. Synthesis, characterization and enzymatically catalyzed degradation of non-covalently anchored cyclodextrines in the side chains of poly(ether-ether-ketone)s , 1995 .

[99]  T. Osa,et al.  Electrochemical Conversion of Alcohols into Aldehydes Mediated by Lipophilic β-Cyclodextrin Bearing a Ferrocene Moiety , 1993 .

[100]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[101]  Akira Harada,et al.  Kinetic control of threading of cyclodextrins onto axle molecules. , 2005, Journal of the American Chemical Society.

[102]  Y. Takashima,et al.  Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility , 2005 .

[103]  D. Lawrence,et al.  Template-driven self-assembly of a porphyrin-containing supramolecular complex , 1990 .

[104]  G. Wenz,et al.  Association thickener by host guest interaction of a β-cyclodextrin polymer and a polymer with hydrophobic side-groups , 1997 .

[105]  A. Harada,et al.  Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests , 2004 .

[106]  D. French,et al.  The Molecular Weights of the Schardinger Alpha and Beta Dextrins1 , 1942 .

[107]  A. Harada,et al.  Formation of Self-assembled Tubular Structures by Mixing Cyclodextrin and Polymers without Solvents , 2005 .

[108]  A. Hashidzume,et al.  Gel‐to‐Sol and Sol‐to‐Gel Transitions Utilizing the Interaction of α‐Cyclodextrin with Dodecyl Side Chains Attached to a Poly(acrylic acid) Backbone , 2005 .

[109]  Y. Takashima,et al.  Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. , 2007, Journal of the American Chemical Society.

[110]  D. Reinhoudt,et al.  Interconnective host-guest complexation of b-cyclodextrin-calix[4]arene couples , 1999 .

[111]  F. Toda,et al.  DANSYL-BETA -CYCLODEXTRINS AS FLUORESCENT SENSORS RESPONSIVE TO ORGANIC COMPOUNDS , 1994 .

[112]  B. Gong,et al.  Preparation of oligoamide-ended poly(ethylene glycol) and hydrogen-bonding-assisted formation of aggregates and nanoscale fibers , 2005 .

[113]  Hidemi Shigekawa,et al.  The Molecular Abacus: STM Manipulation of Cyclodextrin Necklace , 2000 .

[114]  Y. Takashima,et al.  Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules , 2005 .

[115]  Angel E. Kaifer,et al.  Novel class of asymmetric zwitterionic rotaxanes based on α-cyclodextrin , 1991 .

[116]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[117]  A. Harada,et al.  Preparation and characterization of polyrotaxanes containing many threaded .alpha.-cyclodextrins , 1993 .

[118]  A. Harada,et al.  Complex Formation of Cyclodextrins with Cationic Polymers , 1996 .

[119]  S. Hanessian,et al.  Crystal structures and molecular conformations of mono-6-azido-6-deoxy α-Cyclodextrin and mono-2-O-allyl-α-cyclodextrin -The formation of polymeric helical inclusion complexes , 1995 .

[120]  S. Lincoln,et al.  Intra- and intermolecular complexation in C6 monoazacoronand substituted cyclodextrins. , 2004, Organic & biomolecular chemistry.

[121]  J. Lehn,et al.  Molecular recognition directed self‐assembly of supramolecular liquid crystalline polymers from complementary chiral components , 1990 .

[122]  Y. Takashima,et al.  Supramolecular Polymers Formed by Bifunctional Cyclodextrin Derivatives , 2007 .

[123]  Mieczysław Maciejewski,et al.  On the Structure of Beta-Cyclodextrin Polymer Adducts , 1981 .

[124]  D. H. Busch,et al.  Template routes to interlocked molecular structures and orderly molecular entanglements , 2000 .

[125]  Y. Takashima,et al.  Chiral supramolecular polymers formed by host-guest interactions. , 2005, Journal of the American Chemical Society.

[126]  C. Nuckolls,et al.  Emergent mechanical properties of self-assembled polymeric capsules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Luong,et al.  Electrical communication between a water-soluble 1,1'-dimethylferrocene-2-hydroxypropyl-β-cyclodextrin complex and glucose oxidase: biosensor applications , 1994 .

[128]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[129]  Y. Takashima,et al.  Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. , 2008, Chemical communications.

[130]  B. Gong,et al.  Supramolecular AB diblock copolymers. , 2004, Angewandte Chemie.

[131]  A. Harada,et al.  Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin , 1993 .

[132]  Y. Takashima,et al.  A chemical-responsive supramolecular hydrogel from modified cyclodextrins. , 2007, Angewandte Chemie.

[133]  Y. Takashima,et al.  Complex Formation of Cyclodextrins with Various Thiophenes and their Polymerization in Water: Preparation of Poly-pseudo-rotaxanes containing Poly(thiophene)s , 2006 .

[134]  A. Harada,et al.  Daisy Chain Necklace: Tri[2]rotaxane Containing Cyclodextrins , 2000 .

[135]  S. Rowan,et al.  Metal-ligand induced supramolecular polymerization: a route to responsive materials. , 2005, Faraday discussions.

[136]  G. Wenz,et al.  Synthesis of a Lipophilic Cyclodextrin–[2]-Rotaxane† , 1992 .

[137]  A. J. Lovinger,et al.  Hierarchy of Order in Liquid Crystalline Polycaps. , 1999, Angewandte Chemie.

[138]  J. Ripmeester,et al.  Solid Polyrotaxanes of Polyethylene Glycol and Cyclodextrins: The Single Crystal X-ray Structure of PEG−β-cyclodextrin† , 2000 .

[139]  Akira Harada,et al.  Synthesis of a tubular polymer from threaded cyclodextrins , 1993, Nature.

[140]  A. Harada,et al.  Complex Formation of Poly(ε-caprolactone) with Cyclodextrins , 2000 .

[141]  A. Harada,et al.  Supramolecular Polymers Formed by Modified Cyclodextrins , 2001 .

[142]  SakataYoshiteru,et al.  The First Competitive Formation of [4] and [2]Supercyclodextrins by Self-Association of an α-Cyclodextrin Bearing a Bisazophenol Group , 2000 .

[143]  A. Harada,et al.  Preparation and Characterization of Inclusion Complexes of Aliphatic Polyesters with Cyclodextrins , 1997 .

[144]  Donald E. Williams,et al.  The Crystal and Molecular Structure of the Cyclohexaamylose-Potassium Acetate Complex1 , 1965 .

[145]  H. Yamaguchi,et al.  Rotaxanes with unidirectional cyclodextrin array , 2006 .

[146]  Andrew J. P. White,et al.  Self-assembling supramolecular daisy chains , 1998 .

[147]  K. Harata,et al.  Crystal structures of 6-deoxy-6-monosubstituted β-cyclodextrins. Substituent-regulated one-dimensional arrays of macrocycles , 2001 .

[148]  A. Hashidzume,et al.  Light-switchable Janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). , 2010, Chemistry, an Asian journal.

[149]  Akira Harada,et al.  Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-alpha-cyclodextrin by photoirradiation. , 2008, Journal of the American Chemical Society.

[150]  K. Yoshikawa,et al.  Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water. , 2005, The journal of physical chemistry. B.

[151]  E. W. Meijer,et al.  Quadruple hydrogen bonded systems. , 2003, Chemical communications.

[152]  Hou,et al.  Supramolecular photochirogenesis. 2. Enantiodifferentiating photoisomerization of cyclooctene included and sensitized by 6-O-modified cyclodextrins , 2000, The Journal of organic chemistry.

[153]  H. Ritter Funktionalisierte Kammpolymere: Synthesen, modifizierung und anwendungen , 1994 .

[154]  D. Lawrence,et al.  Self-Assembly of a Threaded Molecular Loop , 1990 .

[155]  K. Noguchi,et al.  A Novel Pseudo-Polyrotaxane Structure Composed of Cyclodextrins and a Straight-Chain Polymer: Crystal Structures of Inclusion Complexes of β-Cyclodextrin with Poly(trimethylene oxide) and Poly(propylene glycol) , 2000 .

[156]  Andrew J. P. White,et al.  Supramolecular Daisy Chains. , 1998, Angewandte Chemie.

[157]  Mieczysław Maciejewski Dehydrochlorinated Adduct of β-Cyclodextrin and Poly(vinylidene Chloride) , 1979 .

[158]  A. Harada,et al.  Non-ionic [2]rotaxanes containing methylated α-cyclodextrins , 1997 .

[159]  M. Zhang,et al.  Molecular interpenetration within the columnar structure of crystalline anilino-beta-cyclodextrin. , 2000, Organic letters.

[160]  A. Coleman,et al.  The crystal structure of 6I-(6-aminohexyl)amino-6I-deoxycyclomaltoheptaose. , 1996, Carbohydrate research.

[161]  F. Toda,et al.  Fluorescent Sensors of Molecular Recognition. Modified Cyclodextrins Capable of Exhibiting Guest-Responsive Twisted Intramolecular Charge Transfer Fluorescence , 1993 .

[162]  Hee‐eun Song,et al.  Facile Dimerization and Circular Dichroism Characteristics of 6-O-(2-Sulfonato-6-naphthyl)-β-cyclodextrin , 2002 .

[163]  M. K. Sarvothaman,et al.  Discriminating Influence of α‐ and Methylated β‐Cyclodextrins on Complexation and Polymerization of Diacrylate and Dimethacrylate Monomers , 2004 .

[164]  R. Marchelli,et al.  A Modified Cyclodextrin with a Fully Encapsulated Dansyl Group: Self‐Inclusion in the Solid State and in Solution , 1996 .

[165]  A. Harada,et al.  An Electric Trap: A New Method for Entrapping Cyclodextrin in a Rotaxane Structure , 2000 .

[166]  J. Sauvage,et al.  Templating, self-assembly, and self-organization , 1996 .

[167]  A. Harada,et al.  Preparation and Characterization of the Inclusion Complexes of Poly(dimethylsilane)s with Cyclodextrins , 2003 .

[168]  Y. Takashima,et al.  Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain. , 2007, Organic letters.

[169]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers , 2009 .

[170]  O. Braun,et al.  Catenanes, rotaxanes and pretzelanes–template synthesis and chirality , 1999 .

[171]  J. Desvergne,et al.  Synthesis, photoreactivity and fluorescence properties of new bis -9-anthryloxymethanes , 1995 .

[172]  H. Ritter,et al.  New side-chain poly(methacryl-rotaxanes) bearing cyclodextrins as non-covalently anchored ring components. Chemoenzymatic synthesis and degradation , 1997 .

[173]  Y. Takashima,et al.  Complex Formation between Polyisoprene and Cyclodextrins , 2004 .

[174]  A. Harada,et al.  Complex Formation between Hydrophobic Polymers and Methylated Cyclodextrins. Oligo(ethylene) and Poly(propylene) , 1999 .

[175]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[176]  Hiroto Murakami,et al.  Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion , 2002 .

[177]  H. Ritter,et al.  Synthesis of new side‐chain polyrotaxanes via free radical polymerization of a water‐soluble semi‐rotaxane monomer consisting of 2,6‐dimethyl‐β‐cyclodextrin and 3‐O‐(11‐acryloylaminoundecanoyl)cholic acid , 1998 .

[178]  K. Akiyoshi,et al.  Controlled Association of Hydrophobized Polysaccharide by Cyclodextrin , 1998 .

[179]  F. Hamada,et al.  Host–Guest Sensory System of Dansyl-Modifled β-Cyclodextrin for Detecting Steroidal Compounds by Dansyl Fluorescence , 1990 .

[180]  J. Rebek,et al.  Formation of Discrete, Functional Assemblies and Informational Polymers through the Hydrogen-Bonding Preferences of Calixarene Aryl and Sulfonyl Tetraureas , 1998 .

[181]  Akira Harada,et al.  The molecular necklace: a rotaxane containing many threaded α-cyclodextrins , 1992, Nature.

[182]  H. Ritter,et al.  Side‐Chain Polyrotaxanes with a Tandem Structure Based on Cyclodextrins and a Polymethacrylate Main Chain , 1995 .

[183]  A. Harada,et al.  PREPARATION AND CHARACTERIZATION OF A POLYROTAXANE CONSISTING OF MONODISPERSE POLY(ETHYLENE GLYCOL) AND ALPHA -CYCLODEXTRINS , 1994 .

[184]  G. Fukuhara,et al.  “Molecular Magic”. Formation of a Self-inclusion Complex from a Dumbbell-shaped Permethylated β-Cyclodextrin Derivative , 2003 .

[185]  C. Schalley,et al.  On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. , 2001, Accounts of chemical research.

[186]  A. Harada,et al.  Complex Formation between Poly(methyl vinyl ether) and γ-Cyclodextrin , 1993 .

[187]  Yan-ling Zhang,et al.  Exciton Coupling and Complexation Behaviour of β-Cyclodextrin Naphthoate , 2001 .

[188]  J. Park,et al.  Facile Dimerization of Viologen Radical Cations Covalently Bonded to β-Cyclodextrin and Suppression of the Dimerization by β-Cyclodextrin and Amphiphiles , 1996 .

[189]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[190]  Y. Sakata,et al.  The First [5]Supercyclodextrin Whose Cyclopentameric Array Is Held Only by a Mechanical Bond , 2001 .

[191]  H. Ritter,et al.  Side chain polyrotaxanes: 2. Functionalized polysulfone with non‐covalently anchored cyclodextrins in the side chains , 1994 .

[192]  E. W. Meijer,et al.  Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs , 2000, Nature.

[193]  Xiaoxu Zhao,et al.  Preparation, characterization and novel photoregulated rheological properties of azobenzene functionalized cellulose derivatives and their α-CD complexes , 2004 .

[194]  Akira Harada,et al.  Complex Formation and Gelation between Copolymers Containing Pendant Azobenzene Groups and Cyclodextrin Polymers , 2004 .

[195]  A. Harada,et al.  Preparation of beta-cyclodextrin polyrotaxane: photodimerization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of poly(propylene glycol). , 2004, Organic letters.

[196]  F. D. Schryver,et al.  Photopolymerization. IV. Photopolymerization of bisanthracenes , 1971 .

[197]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[198]  G. Hadziioannou,et al.  Synthesis of Insulated Single-Chain Semiconducting Polymers Based on Polythiophene, Polyfluorene, and β-Cyclodextrin , 2004 .

[199]  H. Ritter,et al.  Comb‐like rotaxane polymers containing non‐covalently bound cyclodextrins in the side chains , 1991 .

[200]  Jean-Marie Lehn,et al.  Supramolecular polymer chemistry—scope and perspectives†‡ , 2002 .

[201]  Kawaguchi,et al.  A cyclodextrin-based molecular shuttle containing energetically favored and disfavored portions in its dumbbell component , 2000, Organic letters.

[202]  H. Gibson,et al.  Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. , 1998, Angewandte Chemie.

[203]  H. Ritter,et al.  Topologically unique side‐chain polyrotaxanes based on triacetyl‐β‐cyclodextrin and a poly(ether sulfone) main chain , 1996 .

[204]  A. Harada,et al.  Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins , 1996 .

[205]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[206]  Y. Takashima,et al.  One-Pot Synthesis of γ-Cyclodextrin Polyrotaxane: Trap of γ-Cyclodextrin by Photodimerization of Anthracene-Capped pseudo-Polyrotaxane , 2004 .

[207]  R. Marchelli,et al.  Fluorescent Chemosensor for Organic Guests and Copper(II) Ion Based on Dansyldiethylenetriamine-Modified β-Cyclodextrin , 1997 .

[208]  M. Garcia‐Garibay,et al.  Inside−Outside Isomerism of β-Cyclodextrin Covalently Linked with a Naphthyl Group , 1996 .

[209]  H. Yamaguchi,et al.  A [2]rotaxane capped by a cyclodextrin and a guest: formation of supramolecular [2]rotaxane polymer. , 2005, Journal of the American Chemical Society.

[210]  W. Binder,et al.  Supramolecular Polymers and Networkswith Hydrogen Bonds in the Main- and Side-Chain , 2006 .

[211]  A. Castellan,et al.  Non-conjugated bichromophoric systems. Part 4. Synthesis and photochemical study of bis-9-anthryls with a four-membered chain; influence of the replacement of methylene links by oxygen atoms or dimethylsilyl groups on the formation of intramolecular excimers and photocyclomers , 1988 .