A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model

Abstract In this paper local radial basis functions (LRBFs) collocation method is proposed for solving the (Patlak-) Keller–Segel model. We use the Crank–Nicolson difference scheme for the time derivative to obtain a finite difference scheme with respect to the time variable for the Keller–Segel model. Then we use the local radial basis functions (LRBFs) collocation method to approximate the spatial derivative. We obtain the numerical results for the mentioned model. As we know, recently some approaches presented for preventing the blow up of the cell density. In the current paper we use the multiquadric (MQ) radial basis function. The aim of this paper is to show that the meshless methods based on the local RBFs collocation approach are also suitable for solving models that have the blow up of the cell density. Also, six test problems are given that show the acceptable accuracy and efficiency of the proposed schemes.

[1]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[2]  Ansgar Jüngel,et al.  Cross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model , 2011, SIAM J. Math. Anal..

[3]  J. Murray,et al.  A minimal mechanism for bacterial pattern formation , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  Alexander Kurganov,et al.  A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models , 2008, Numerische Mathematik.

[5]  S. Sarra,et al.  Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation , 2014 .

[6]  Scott A. Sarra,et al.  Adaptive radial basis function methods for time dependent partial differential equations , 2005 .

[7]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[8]  Y. Sugiyama,et al.  On uniqueness theorem on weak solutions to the parabolic–parabolic Keller–Segel system of degenerate and singular types , 2014 .

[9]  Mehdi Dehghan,et al.  The numerical solution of Fokker–Planck equation with radial basis functions (RBFs) based on the meshless technique of Kansa׳s approach and Galerkin method , 2014 .

[10]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[11]  S. Sarra A linear system‐free Gaussian RBF method for the Gross‐Pitaevskii equation on unbounded domains , 2012 .

[12]  Alexander Kurganov,et al.  New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..

[13]  B. Fornberg,et al.  Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .

[14]  A. Cheng,et al.  Radial basis collocation methods for elliptic boundary value problems , 2005 .

[15]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[16]  Scott A. Sarra,et al.  A random variable shape parameter strategy for radial basis function approximation methods , 2009 .

[17]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[18]  E. Kansa,et al.  Numerical simulation of two-dimensional combustion using mesh-free methods , 2009 .

[19]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..

[20]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[21]  Mehdi Dehghan,et al.  A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions , 2007, Comput. Math. Appl..

[22]  Mehdi Dehghan,et al.  A method for solving partial differential equations via radial basis functions: Application to the heat equation , 2010 .

[23]  Zhenhua Chai,et al.  Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis model , 2014, Comput. Math. Appl..

[24]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[25]  Jay Gopalakrishnan,et al.  Nonnegativity of exact and numerical solutions of some chemotactic models , 2013, Comput. Math. Appl..

[26]  N. Rodríguez On the global well-posedness theory for a class of PDE models for criminal activity , 2013 .

[27]  Mehdi Dehghan,et al.  A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation , 2012 .

[28]  Marianne Bessemoulin-Chatard,et al.  A finite volume scheme for a Keller–Segel model with additional cross-diffusion , 2012, 1208.0309.

[29]  Wen Chen,et al.  Recent Advances in Radial Basis Function Collocation Methods , 2013 .

[30]  A. Cheng Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .

[31]  Mehdi Dehghan,et al.  Use of radial basis functions for solving the second‐order parabolic equation with nonlocal boundary conditions , 2008 .

[32]  Scott A. Sarra,et al.  A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains , 2012, Appl. Math. Comput..

[33]  Cesar Augusto Gómez Sierra,et al.  New periodic and soliton solutions for the Generalized BBM and Burgers-BBM equations , 2010, Appl. Math. Comput..

[34]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[35]  Mehdi Dehghan,et al.  A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation , 2010, Comput. Phys. Commun..

[36]  Saeed Kazem,et al.  A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions: A comparative study , 2012, Comput. Math. Appl..

[37]  Roman Cherniha,et al.  Exact solutions of the simplified Keller-Segel model , 2013, Commun. Nonlinear Sci. Numer. Simul..

[38]  Marco Di Francesco,et al.  Fully parabolic Keller–Segel model for chemotaxis with prevention of overcrowding , 2008 .

[39]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[40]  Muhammad Aslam Noor,et al.  Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation , 2011, Comput. Math. Appl..

[41]  L. Corrias,et al.  Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane , 2014, 1403.2550.

[42]  A. Aminataei,et al.  ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME , 2008 .

[43]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[44]  Mehdi Dehghan,et al.  The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas , 2011, Comput. Phys. Commun..

[45]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[46]  Wing Kam Liu,et al.  MESHLESS METHODS FOR SHEAR-DEFORMABLE BEAMS AND PLATES , 1998 .

[47]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[48]  C. Patlak Random walk with persistence and external bias , 1953 .

[49]  L. G. Stern,et al.  Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.

[50]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[51]  Sachiko Ishida,et al.  Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data , 2012 .

[52]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[53]  Saeid Abbasbandy,et al.  A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation , 2013 .

[54]  A. Cheng Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions , 2000 .

[55]  Alexander Kurganov,et al.  Numerical study of two-species chemotaxis models , 2013 .

[56]  YuanTong Gu,et al.  AN ADVANCED MESHLESS METHOD FOR TIME FRACTIONAL DIFFUSION EQUATION , 2011 .

[57]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[58]  Scott A. Sarra,et al.  Radial basis function approximation methods with extended precision floating point arithmetic , 2011 .

[59]  Ibrahim Fatkullin,et al.  A study of blow-ups in the Keller–Segel model of chemotaxis , 2010, 1006.4978.

[60]  D. Mirzaei A meshless based method for solution of integral equations , 2010, 1508.07539.

[61]  S. A. Sarra,et al.  Integrated multiquadric radial basis function approximation methods , 2006, Comput. Math. Appl..

[62]  Yekaterina Epshteyn,et al.  Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model , 2012, J. Sci. Comput..

[63]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[64]  Sining Zheng,et al.  A lower bound for blow-up time in a fully parabolic Keller-Segel system , 2013, Appl. Math. Lett..

[65]  Ji Liu,et al.  Spatial pattern formation in the Keller-Segel model with a logistic source , 2013, Comput. Math. Appl..

[66]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[67]  C.-S. Huang,et al.  On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs , 2010 .

[68]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[69]  C. Deng,et al.  Ill-posedness of the two-dimensional Keller–Segel model in Triebel–Lizorkin spaces , 2014 .

[70]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[71]  Eric Carlen,et al.  Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model , 2010, 1009.0134.

[72]  Mehdi Dehghan,et al.  Numerical solution of stochastic elliptic partial differential equations using the meshless method of radial basis functions , 2015 .

[73]  J. Murray,et al.  Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.

[74]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[75]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[76]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[77]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[78]  Prasad K. Yarlagadda,et al.  Time‐dependent fractional advection–diffusion equations by an implicit MLS meshless method , 2011 .

[79]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[80]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .