Multi-dimensional symbolic dynamical systems

The purpose of this note is to point out some of the phenomena which arise in the transition from classical shifts of finite type X ⊂ A ℤ to multi-dimensional shifts of finite type X ⊂ A ℤ d, d ≥ 2, where A is a finite alphabet. We discuss rigidity properties of certain multi-dimensional shifts, such as the appearance of an unexpected intrinsic algebraic structure or the scarcity of isomorphisms and invariant measures. The final section concentrates on group shifts with finite or uncountable alphabets, and with the symbolic representation of such shifts in the latter case.

[1]  A. Vershik Arithmetic isomorphism of hyperbolic toral automorphisms and sofic shifts , 1992 .

[2]  K. Schmidt,et al.  Almost block independence and bernoullicity of ℤd-actions by automorphisms of compact abelian groups , 1995 .

[3]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[4]  Klaus Schmidt,et al.  Algebraic ideas in ergodic theory , 1990 .

[5]  Klaus Schmidt,et al.  Mahler measure and entropy for commuting automorphisms of compact groups , 1990 .

[6]  K. Schmidt,et al.  Isomorphism rigidity of irreducible algebraic ℤd-actions , 2000 .

[7]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[8]  Nikita Sidorov,et al.  Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems , 1998 .

[9]  Klaus Schmidt,et al.  Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .

[10]  Hao Wang,et al.  Proving theorems by pattern recognition I , 1960, Commun. ACM.

[11]  Nikita Sidorov,et al.  Bijective Arithmetic Codings of Hyperbolic Automorphisms of the 2-Torus, and Binary Quadratic Forms , 1998 .

[12]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[13]  Michael E. Paul,et al.  Matrix Subshifts for Zv Symbolic Dynamics , 1981 .

[14]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[15]  Jeffrey C. Lagarias,et al.  Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.

[16]  K. Schmidt,et al.  ESITheErwinSchrodingerInternational InstituteforMathematicalPhysics Boltzmanngasse9 A-1090Wien,Austria HomoclinicPointsofAlgebraicZd{Actions , 2022 .

[17]  Klaus Schmidt Dynamical Systems of Algebraic Origin , 1995 .

[18]  R. Pemantle,et al.  PR ] 2 A pr 2 00 4 LOCAL CHARACTERISTICS , ENTROPY AND LIMIT THEOREMS FOR SPANNING TREES AND DOMINO TILINGS VIA TRANSFER-IMPEDANCES Running Head : LOCAL BEHAVIOR OF SPANNING TREES , 1993 .

[19]  W. Thurston Conway's tiling groups , 1990 .

[20]  K. Schmidt The cohomology of higher-dimensional shifts of finite type , 1995 .

[21]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[22]  Klaus Schmidt,et al.  Automorphisms of Compact Abelian Groups and Affine Varieties , 1990 .

[23]  Klaus Schmidt,et al.  Automorphisms of compact groups , 1989, Ergodic Theory and Dynamical Systems.

[24]  Klaus Schmidt,et al.  MARKOV PARTITIONS AND HOMOCLINIC POINTS OF ALGEBRAICZ d -ACTIONS , 1997 .

[25]  Fundamental cocycles of tiling spaces , 2001, Ergodic Theory and Dynamical Systems.

[26]  K. Schmidt,et al.  Mixing sets and relative entropies for higher-dimensional Markov shifts , 1993, Ergodic Theory and Dynamical Systems.

[27]  Barry Mazur,et al.  On Periodic Points , 1965 .

[28]  Tilings, fundamental cocycles and fundamental groups of symbolic ${\Bbb Z}^{d}$-actions , 1998, Ergodic Theory and Dynamical Systems.

[29]  TILINGS, FUNDAMENTAL COCYCLES AND FUNDAMENTAL GROUPS OF SYMBOLIC Zd-ACTIONS , 2006 .

[30]  Robert L. Berger The undecidability of the domino problem , 1966 .

[31]  Klaus Schmidt,et al.  Periodic points, decidability and Markov subgroups , 1988 .

[32]  K. Schmidt,et al.  Homoclinic points of algebraic ℤ^{}-actions , 1999 .