Multi-dimensional symbolic dynamical systems
暂无分享,去创建一个
[1] A. Vershik. Arithmetic isomorphism of hyperbolic toral automorphisms and sofic shifts , 1992 .
[2] K. Schmidt,et al. Almost block independence and bernoullicity of ℤd-actions by automorphisms of compact abelian groups , 1995 .
[3] R. Robinson. Undecidability and nonperiodicity for tilings of the plane , 1971 .
[4] Klaus Schmidt,et al. Algebraic ideas in ergodic theory , 1990 .
[5] Klaus Schmidt,et al. Mahler measure and entropy for commuting automorphisms of compact groups , 1990 .
[6] K. Schmidt,et al. Isomorphism rigidity of irreducible algebraic ℤd-actions , 2000 .
[7] P. W. Kasteleyn. The Statistics of Dimers on a Lattice , 1961 .
[8] Nikita Sidorov,et al. Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems , 1998 .
[9] Klaus Schmidt,et al. Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .
[10] Hao Wang,et al. Proving theorems by pattern recognition I , 1960, Commun. ACM.
[11] Nikita Sidorov,et al. Bijective Arithmetic Codings of Hyperbolic Automorphisms of the 2-Torus, and Binary Quadratic Forms , 1998 .
[12] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .
[13] Michael E. Paul,et al. Matrix Subshifts for Zv Symbolic Dynamics , 1981 .
[14] Hao Wang. Proving theorems by pattern recognition — II , 1961 .
[15] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[16] K. Schmidt,et al. ESITheErwinSchrodingerInternational InstituteforMathematicalPhysics Boltzmanngasse9 A-1090Wien,Austria HomoclinicPointsofAlgebraicZd{Actions , 2022 .
[17] Klaus Schmidt. Dynamical Systems of Algebraic Origin , 1995 .
[18] R. Pemantle,et al. PR ] 2 A pr 2 00 4 LOCAL CHARACTERISTICS , ENTROPY AND LIMIT THEOREMS FOR SPANNING TREES AND DOMINO TILINGS VIA TRANSFER-IMPEDANCES Running Head : LOCAL BEHAVIOR OF SPANNING TREES , 1993 .
[19] W. Thurston. Conway's tiling groups , 1990 .
[20] K. Schmidt. The cohomology of higher-dimensional shifts of finite type , 1995 .
[21] J. Propp,et al. Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.
[22] Klaus Schmidt,et al. Automorphisms of Compact Abelian Groups and Affine Varieties , 1990 .
[23] Klaus Schmidt,et al. Automorphisms of compact groups , 1989, Ergodic Theory and Dynamical Systems.
[24] Klaus Schmidt,et al. MARKOV PARTITIONS AND HOMOCLINIC POINTS OF ALGEBRAICZ d -ACTIONS , 1997 .
[25] Fundamental cocycles of tiling spaces , 2001, Ergodic Theory and Dynamical Systems.
[26] K. Schmidt,et al. Mixing sets and relative entropies for higher-dimensional Markov shifts , 1993, Ergodic Theory and Dynamical Systems.
[27] Barry Mazur,et al. On Periodic Points , 1965 .
[28] Tilings, fundamental cocycles and fundamental groups of symbolic ${\Bbb Z}^{d}$-actions , 1998, Ergodic Theory and Dynamical Systems.
[29] TILINGS, FUNDAMENTAL COCYCLES AND FUNDAMENTAL GROUPS OF SYMBOLIC Zd-ACTIONS , 2006 .
[30] Robert L. Berger. The undecidability of the domino problem , 1966 .
[31] Klaus Schmidt,et al. Periodic points, decidability and Markov subgroups , 1988 .
[32] K. Schmidt,et al. Homoclinic points of algebraic ℤ^{}-actions , 1999 .