In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics.

We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.

[1]  M. Bichler,et al.  Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy , 2010 .

[2]  C. Chang-Hasnain,et al.  Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.

[3]  Connie J. Chang-Hasnain,et al.  Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .

[4]  P. Offermans,et al.  Gas detection with vertical InAs nanowire arrays. , 2010, Nano letters.

[5]  L. Wernersson,et al.  Vertical InAs Nanowire Wrap Gate Transistors on Si Substrates , 2008, IEEE Transactions on Electron Devices.

[6]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[7]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[8]  J. Gilman,et al.  Nanotechnology , 2001 .

[9]  Connie Chang-Hasnain,et al.  Nanolasers Grown on Silicon , 2011, 1101.3305.

[10]  Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects , 2009, 0910.5266.

[11]  Ik Su Chun,et al.  Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. , 2008, Nano letters.

[12]  Lars Samuelson,et al.  Au-free epitaxial growth of InAs nanowires. , 2006, Nano letters.

[13]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[14]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[15]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[16]  J-P Zhang,et al.  Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy , 2010, Nanotechnology.

[17]  Elif Ertekin,et al.  Equilibrium limits of coherency in strained nanowire heterostructures , 2005 .

[18]  D. Blom,et al.  Self-assembled FePt nanodot arrays with mono-dispersion and -orientation , 2005 .

[19]  Martin A. Green,et al.  Accuracy of analytical expressions for solar cell fill factors , 1982 .

[20]  Zhiyong Fan,et al.  Ordered arrays of dual-diameter nanopillars for maximized optical absorption. , 2010, Nano letters.

[21]  T. Metzger,et al.  Determination of strain fields and composition of self-organized quantum dots using x-ray diffraction , 2001 .

[22]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[23]  P.D. Swanson,et al.  Electric field directed assembly of an InGaAs LED onto silicon circuitry , 2000, IEEE Photonics Technology Letters.

[24]  C. Chang-Hasnain,et al.  Atomically sharp catalyst-free wurtzite GaAs /AlGaAs nanoneedles grown on silicon , 2008 .

[25]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[26]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[27]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[28]  Kiyoshi Takahashi,et al.  Growth of InAs Whiskers in Wurtzite Structure , 1966 .

[29]  V. Zwiller,et al.  Growth and characterization of InP nanowires with InAsP insertions. , 2007, Nano letters.

[30]  P. Daniel Dapkus,et al.  Wurtzite InP nanowire arrays grown by selective area MOCVD , 2010 .

[31]  Lars Samuelson,et al.  Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self‐Assembled Organic Coatings , 2007 .

[32]  Federico Capasso,et al.  Bandgap engineering of semiconductor heterostructures by molecular beam epitaxy: physics and applications , 1994 .

[33]  Takashi Fukui,et al.  Control of InAs nanowire growth directions on Si. , 2008, Nano letters.

[34]  F. Capasso,et al.  A Proposed Hydrogenation/Nitridization Passivation Mechanism for GaAs and Other III–V Semiconductor Devices, Including InGaAs Long Wavelength Photodetectors , 1982 .

[35]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[36]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[37]  Chennupati Jagadish,et al.  Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. , 2006, Nano letters.

[38]  Yong Ding,et al.  Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. , 2009, Nano letters.

[39]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[40]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[41]  Kenji Hiruma,et al.  Structural transition in indium phosphide nanowires. , 2010, Nano letters.

[42]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[43]  C. Chang-Hasnain,et al.  Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates , 2010, Nanotechnology.

[44]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[45]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[46]  Diana L. Huffaker,et al.  InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy , 2010 .

[47]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[48]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[49]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[50]  J. Zuo,et al.  Coherent nano‐area electron diffraction , 2004, Microscopy research and technique.