Size dependent partitioning of organic material: evidence for the formation of organic coatings on aqueous aerosols

[1]  J. Seinfeld,et al.  Mathematical model for gas-particle partitioning of secondary organic aerosols , 1997 .

[2]  A. Zelenyuk,et al.  Evaporation of water from particles in the aerodynamic lens inlet: an experimental study. , 2006, Analytical chemistry.

[3]  Ari Laaksonen,et al.  Organic aerosol formation via sulphate cluster activation , 2004 .

[4]  J. Jimenez,et al.  Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers , 2004 .

[5]  P. Chuang Measurement of the timescale of hygroscopic growth for atmospheric aerosols , 2003 .

[6]  Peter Brimblecombe,et al.  Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds , 2001 .

[7]  R. Forkel,et al.  Observations of particle formation and growth in a mountainous forest region in central Europe , 2004 .

[8]  W. Seidl Model for a surface film of fatty acids on rain water and aerosol particles , 2000 .

[9]  David R. Cocker,et al.  The effect of water on gas–particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system , 2001 .

[10]  J. Schauer,et al.  Observations of elemental carbon and absorption during ACE‐Asia and implications for aerosol radiative properties and climate forcing , 2003 .

[11]  James F. Pankow,et al.  Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere , 1987 .

[12]  J. Jimenez,et al.  Palmitic Acid Coating on Ammonium Sulfate Impact of Palmitic Acid Coating on the Water Uptake and Loss of Ammonium Sulfate Particles Acpd Palmitic Acid Coating on Ammonium Sulfate , 2022 .

[13]  V. Vaida,et al.  Selectivity and stability of organic films at the air-aqueous interface. , 2004, Journal of colloid and interface science.

[14]  K. Kupiainen,et al.  Identification of an organic coating on marine aerosol particles by TOF‐SIMS , 2002 .

[15]  J. Thornton,et al.  The effect of varying levels of surfactant on the reactive uptake of N 2 O 5 to aqueous aerosol , 2006 .

[16]  John H. Seinfeld,et al.  Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products , 1999 .

[17]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[18]  A. Tabazadeh Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles , 2005 .

[19]  Kenneth A. Smith,et al.  Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles , 2000 .

[20]  O. Anderson Physiology and Ecology , 1983 .

[21]  M. Rusdi,et al.  Difference in Surface Properties between Insoluble Monolayer and Adsorbed Film from Kinetics of Water Evaporation and BAM Image. , 2004, The journal of physical chemistry. B.

[22]  J. Seinfeld,et al.  Organic atmospheric particulate material. , 2003, Annual review of physical chemistry.

[23]  J. Jimenez,et al.  A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data , 2004 .

[24]  M. Facchini,et al.  The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types , 2002 .

[25]  P. Ziemann,et al.  Effects of Stabilized Criegee Intermediate and OH Radical Scavengers on Aerosol Formation from Reactions of β-Pinene with O 3 , 2003 .

[26]  Boris Bonn,et al.  Influence of water vapor on the process of new particle formation during monoterpene ozonolysis , 2002 .

[27]  M. Facchini,et al.  Solubility properties of surfactants in atmospheric aerosol and cloud/fog water samples , 2003 .

[28]  Kaarle Kupiainen,et al.  New evidence of an organic layer on marine aerosols , 2002 .

[29]  P. Kumar,et al.  Formation of cloud condensation nuclei by oxidative processing: Unsaturated fatty acids , 2004 .

[30]  Charles J. Weschler,et al.  Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes , 1983 .

[31]  I. Tang,et al.  Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance , 1994 .

[32]  Astrid Kiendler-Scharr,et al.  On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. , 2006, The journal of physical chemistry. A.

[33]  S. M. Aschmann,et al.  OH radical formation from the gas-phase reactions of O3 with a series of terpenes , 2002 .

[34]  B. Lamb,et al.  Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review , 2000 .

[35]  Andreas Wahner,et al.  A study of nighttime nitrogen oxide oxidation in a large reaction chamber : The fate of NO2, N2O5, HNO3, and O3 at different humidities , 1996 .

[36]  B. Gilbert,et al.  Simulating secondary organic aerosol activation by condensation of multiple organics on seed particles. , 2003, Environmental science & technology.

[37]  G. T. Barnes The effects of monolayers on the evaporation of liquids , 1986 .

[38]  J. Seinfeld,et al.  Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii–Stokes–Robinson approach , 2003 .

[39]  D. Ceburnis,et al.  Biogenically driven organic contribution to marine aerosol , 2004, Nature.

[40]  V. Vaida,et al.  Fatty acids on continental sulfate aerosol particles: FATTY ACID SURFACTANTS , 2005 .

[41]  Adrian F. Tuck,et al.  Atmospheric processing of organic aerosols , 1999 .

[42]  John H. Seinfeld,et al.  Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds , 2006 .

[43]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[44]  A. Nenes,et al.  Effects of film-forming compounds on the growth of giant cloud condensation nuclei: Implications for cloud microphysics and the aerosol indirect effect , 2004 .

[45]  Adrian Barbu,et al.  Simulating organic aerosol formation during the photooxidation of toluene/NOx mixtures: comparing the equilibrium and kinetic assumption. , 2004, Environmental science & technology.

[46]  R C Flagan,et al.  Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. , 2005, Environmental science & technology.

[47]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[48]  E. Keith Bigg,et al.  Source and evolution of the marine aerosol—A new perspective , 2005 .

[49]  Kenneth A. Smith,et al.  Aerosol mass spectrometer for size and composition analysis of submicron particles , 1998 .

[50]  Y. Nojiri,et al.  Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea‐salt particles , 2002 .

[51]  Roger Barlow,et al.  Statistics : a guide to the use of statistical methods in thephysical sciences , 1989 .

[52]  M. Schnaiter,et al.  Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene , 2003 .

[53]  Tomi Raatikainen,et al.  Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest , 2005 .

[54]  Michael E. Jenkin,et al.  Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3 , 2004 .

[55]  S. M. Aschmann,et al.  Rate constants for the gas‐phase reactions of O3 with a series of monoterpenes and related compounds at 296 ± 2 K , 1990 .

[56]  Reinhard Niessner,et al.  Laboratory studies of the influence of thin organic films on the neutralization reaction of H2SO4 aerosol with ammonia , 1992 .

[57]  L. Pasternack,et al.  Particle formation and growth from ozonolysis of α‐pinene , 2001 .

[58]  Mareike Folkers Bestimmung der Reaktionswahrscheinlichkeit von N2O5 an troposphärisch relevanten Aerosolen , 2002 .

[59]  Roger Atkinson,et al.  Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review , 2003 .

[60]  Graham Feingold,et al.  Analysis of the Influence of Film-Forming Compounds on Droplet Growth: Implications for Cloud Microphysical Processes and Climate , 2002 .

[61]  J. Kesselmeier,et al.  Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology , 1999 .

[62]  Yoshiteru Iinuma,et al.  Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products , 2004 .

[63]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[64]  J. Seinfeld,et al.  Gas/Particle Partitioning and Secondary Organic Aerosol Yields , 1996 .

[65]  L. Russell,et al.  Mapping organic coatings on atmospheric particles , 2002 .

[66]  A. Hansel,et al.  On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research , 1998 .

[67]  Hanna Vehkamäki,et al.  Formation and growth rates of ultrafine atmospheric particles: a review of observations , 2004 .

[68]  John H. Seinfeld,et al.  Organic aerosol formation from the oxidation of biogenic hydrocarbons , 1999 .

[69]  R. Dingenen,et al.  Hygroscopic properties of aerosol formed by oxidation of limonene, α‐pinene, and β‐pinene , 1999 .

[70]  J. Pankow An absorption model of GAS/Particle partitioning of organic compounds in the atmosphere , 1994 .

[71]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[72]  Andreas Wahner,et al.  Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5 , 2003 .

[73]  R. Dingenen,et al.  LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH-radicals , 2003 .

[74]  Y. Rudich,et al.  Adsorption of organic compounds pertinent to urban environments onto mineral dust particles , 2004 .