Sequential experimental design based generalised ANOVA

Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.

[1]  I. Sobol Uniformly distributed sequences with an additional uniform property , 1976 .

[2]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[3]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[4]  Wei-Liang Jin,et al.  Improving importance sampling method in structural reliability , 1994 .

[5]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[6]  Herschel Rabitz,et al.  General formulation of HDMR component functions with independent and correlated variables , 2011, Journal of Mathematical Chemistry.

[7]  Lambros S. Katafygiotis,et al.  Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions , 2011 .

[8]  Pierfrancesco Cacciola,et al.  Monte Carlo simulation in the stochastic analysis of non-linear systems under external stationary Poisson white noise input , 2003 .

[9]  Maurice Lemaire,et al.  Assessing small failure probabilities by combined subset simulation and Support Vector Machines , 2011 .

[10]  Stefano De Marchi,et al.  A new stable basis for radial basis function interpolation , 2013, J. Comput. Appl. Math..

[11]  T. Holland-Letz,et al.  A geometric characterization of c-optimal designs for heteroscedastic regression , 2009, 0911.3801.

[12]  G. Hooker Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables , 2007 .

[13]  S. Adhikari A reduced spectral function approach for the stochastic finite element analysis , 2011 .

[14]  R. Lebrun,et al.  An innovating analysis of the Nataf transformation from the copula viewpoint , 2009 .

[15]  H. Faure Good permutations for extreme discrepancy , 1992 .

[16]  LU Da-gang FIRST ORDER RELIABILITY METHOD BASED ON LINEARIZED NATAF TRANSFORMATION , 2007 .

[17]  M. Hohenbichler,et al.  Improvement Of Second‐Order Reliability Estimates by Importance Sampling , 1988 .

[18]  Irfan Kaymaz,et al.  Application Of Kriging Method To Structural Reliability Problems , 2005 .

[19]  Sondipon Adhikari,et al.  Dynamic analysis of stochastic structural systems using frequency adaptive spectral functions , 2015 .

[20]  S. Chakraborty,et al.  Reliability analysis of structures by iterative improved response surface method , 2016 .

[21]  Silvio Galanti,et al.  Low-Discrepancy Sequences , 1997 .

[22]  Amaro G. Barreto,et al.  A new approach for sequential experimental design for model discrimination , 2006 .

[23]  Souvik Chakraborty,et al.  Multivariate function approximations using the D-MORPH algorithm , 2015 .

[24]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[25]  Sondipon Adhikari Asymptotic distribution method for structural reliability analysis in high dimensions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Bruce R. Ellingwood,et al.  Reliability of Reinforced-Concrete Cylindrical Shells , 1995 .

[27]  Souvik Chakraborty,et al.  Polynomial Correlated Function Expansion for Nonlinear Stochastic Dynamic Analysis , 2015 .

[28]  B. Sudret,et al.  Reliability-based design optimization using kriging surrogates and subset simulation , 2011, 1104.3667.

[29]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[30]  Lu Zhenzhou,et al.  Reliability Sensitivity Algorithm Based on Stratified Importance Sampling Method for Multiple Failure Modes Systems , 2010 .

[31]  K. B. Misra,et al.  Monte Carlo simulation for reliability evaluation of complex systems , 1978 .

[32]  Xiang Ma,et al.  An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations , 2010, J. Comput. Phys..

[33]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[34]  Subrata Chakraborty,et al.  Adaptive response surface based efficient Finite Element Model Updating , 2014 .

[35]  J. Beck,et al.  A new adaptive importance sampling scheme for reliability calculations , 1999 .

[36]  Robert E. Melchers,et al.  General multi-dimensional probability integration by directional simulation , 1990 .

[37]  Henri P. Gavin,et al.  High-order limit state functions in the response surface method for structural reliability analysis , 2008 .

[38]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[39]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[40]  H. Rabitz,et al.  Random Sampling-High Dimensional Model Representation (RS-HDMR) with Nonuniformly Distributed Variables: Application to an Integrated Multimedia/ Multipathway Exposure and Dose Model for Trichloroethylene , 2003 .

[41]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[42]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[43]  L. Montefusco,et al.  Radial basis functions for the multivariate interpolation of large scattered data sets , 2002 .

[44]  Souvik Chakraborty,et al.  A semi-analytical framework for structural reliability analysis , 2015 .

[45]  W. A. Ericson Optimum Stratified Sampling Using Prior Information , 1965 .

[46]  Soo-Chang Kang,et al.  An efficient response surface method using moving least squares approximation for structural reliability analysis , 2010 .

[47]  Sondipon Adhikari,et al.  Reliability Analysis Using Parabolic Failure Surface Approximation , 2004 .

[48]  A. Kiureghian,et al.  Second-Order Reliability Approximations , 1987 .

[49]  Isaac Elishakoff,et al.  Refined second-order reliability analysis☆ , 1994 .

[50]  R. A. Fisher,et al.  Design of Experiments , 1936 .

[51]  S. Adhikari,et al.  A reduced polynomial chaos expansion method for the stochastic finite element analysis , 2012 .

[52]  Yongchang Pu,et al.  Reliability analysis of structures using neural network method , 2006 .

[53]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .

[54]  H. Rabitz,et al.  D-MORPH regression: application to modeling with unknown parameters more than observation data , 2010 .

[55]  Herschel Rabitz,et al.  Regularized random-sampling high dimensional model representation (RS-HDMR) , 2008 .

[56]  H. Rabitz,et al.  D-MORPH regression for modeling with fewer unknown parameters than observation data , 2012, Journal of Mathematical Chemistry.

[57]  Pedro G. Coelho,et al.  Structural reliability analysis using Monte Carlo simulation and neural networks , 2008, Adv. Eng. Softw..

[58]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[59]  H. Rabitz,et al.  Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. , 2006, The journal of physical chemistry. A.

[60]  Souvik Chakraborty,et al.  Assessment of polynomial correlated function expansion for high-fidelity structural reliability analysis , 2016 .

[61]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[62]  Herschel Rabitz,et al.  Efficient Implementation of High Dimensional Model Representations , 2001 .

[63]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[64]  Anupam Chakrabarti,et al.  Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion , 2016 .

[65]  A. Meher Prasad,et al.  High‐dimensional model representation for structural reliability analysis , 2009 .

[66]  A. M. Hasofer,et al.  Directional simulation in Gaussian processes , 1988 .

[67]  A. Meher Prasad,et al.  High dimensional model representation for piece‐wise continuous function approximation , 2007 .

[68]  Jinsuo Nie,et al.  A new directional simulation method for system reliability. Part I: application of deterministic point sets , 2004 .