An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints
暂无分享,去创建一个
[1] Ileana Streinu,et al. A Pseudo-Algorithmic Separation of Lines from Pseudo-Lines , 1995, Inf. Process. Lett..
[2] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[3] Michael L. Fredman,et al. How Good is the Information Theory Bound in Sorting? , 1976, Theor. Comput. Sci..
[4] J. A. Vísek,et al. Sensitivity analysis of M-estimates , 1996 .
[5] Roy E. Welsch,et al. Efficient Computing of Regression Diagnostics , 1981 .
[6] F. Hampel. The Influence Curve and Its Role in Robust Estimation , 1974 .
[7] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[8] O. Hössjer. Exact computation of the least trimmed squares estimate in simple linear regression , 1995 .
[9] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[10] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .
[11] F. Hampel. A General Qualitative Definition of Robustness , 1971 .
[12] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[13] Douglas M. Hawkins,et al. The feasible set algorithm for least median of squares regression , 1993 .
[14] T. Speed,et al. An estimate of the crosstalk matrix in four‐dye fluorescence‐based DNA sequencing , 1999, Electrophoresis.
[15] J. Steele,et al. Time- and Space-Efficient Algorithms for Least Median of Squares Regression , 1987 .
[16] M. Adams,et al. Automated DNA sequencing and analysis. , 1994 .
[17] C. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[18] Jan Ámos Víšek,et al. On the diversity of estimates , 2000 .
[19] R. Cook. Detection of influential observation in linear regression , 2000 .