Domain Adaptive Classification

We propose an unsupervised domain adaptation method that exploits intrinsic compact structures of categories across different domains using binary attributes. Our method directly optimizes for classification in the target domain. The key insight is finding attributes that are discriminative across categories and predictable across domains. We achieve a performance that significantly exceeds the state-of-the-art results on standard benchmarks. In fact, in many cases, our method reaches the same-domain performance, the upper bound, in unsupervised domain adaptation scenarios.

[1]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[2]  Rama Chellappa,et al.  Domain adaptation for object recognition: An unsupervised approach , 2011, 2011 International Conference on Computer Vision.

[3]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[4]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[5]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[6]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[7]  Bernhard Schölkopf,et al.  Correcting Sample Selection Bias by Unlabeled Data , 2006, NIPS.

[8]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[9]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[10]  Ali Farhadi,et al.  Learning to Recognize Activities from the Wrong View Point , 2008, ECCV.

[11]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[12]  Trevor Darrell,et al.  What you saw is not what you get: Domain adaptation using asymmetric kernel transforms , 2011, CVPR 2011.

[13]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[15]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[16]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[17]  Ali Farhadi,et al.  Attribute Discovery via Predictable Discriminative Binary Codes , 2012, ECCV.

[18]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[19]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[20]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[21]  Kristen Grauman,et al.  Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation , 2013, ICML.

[22]  Ali Farhadi,et al.  Transfer Learning in Sign language , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[24]  Alexei A. Efros,et al.  Undoing the Damage of Dataset Bias , 2012, ECCV.

[25]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Avishek Saha,et al.  Co-regularization Based Semi-supervised Domain Adaptation , 2010, NIPS.

[27]  Lorenzo Torresani,et al.  Exploiting weakly-labeled Web images to improve object classification: a domain adaptation approach , 2010, NIPS.