Simulating streamer discharges in 3D with the parallel adaptive Afivo framework

We present an open-source plasma fluid code for 2D, cylindrical and 3D simulations of streamer discharges. The code is based on the Afivo framework, which features adaptive mesh refinement on quadtree/octree grids, geometric multigrid methods for Poisson's equation, and OpenMP parallelism. We describe the numerical implementation of a fluid model of the drift-diffusion-reaction type, combined with the local field approximation. Then we demonstrate its functionality with 3D simulations of long positive streamers in nitrogen in undervolted gaps. Three examples are presented. The first one shows how a stochastic background density affects streamer propagation and branching. The second one focuses on the interaction of a streamer with preionized regions, and the third one investigates the interaction between two streamers. The simulations use up to 108 grid cells and run in less than a day; without mesh refinement they would require more than grid cells.

[1]  George E. Georghiou,et al.  Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena , 2011 .

[2]  Jannis Teunissen,et al.  Comparing plasma fluid models of different order for 1D streamer ionization fronts , 2015 .

[3]  A. A. Kulikovsky,et al.  Three-dimensional simulation of a positive streamer in air near curved anode , 1998 .

[4]  A. Kulikovsky A more accurate Scharfetter-Gummel algorithm of electron transport for semiconductor and gas discharge simulation , 1995 .

[5]  U. Ebert,et al.  A Peculiar Streamer Morphology Created by a Complex Voltage Pulse , 2011, IEEE Transactions on Plasma Science.

[6]  O. Ducasse,et al.  Effects of numerical and physical anisotropic diffusion on branching phenomena of negative-streamer dynamics , 2012 .

[7]  S. Pancheshnyi Photoionization produced by low-current discharges in O2, air, N2 and CO2 , 2014 .

[8]  A. Bourdon,et al.  The use of the ghost fluid method for Poisson's equation to simulate streamer propagation in point-to-plane and point-to-point geometries , 2009 .

[9]  Jannis Teunissen,et al.  3D simulations and analysis of pulsed discharges , 2015 .

[10]  Barry Koren,et al.  A robust upwind discretization method for advection, diffusion and source terms , 1993 .

[11]  Ute Ebert,et al.  The role of free electrons in the guiding of positive streamers , 2016 .

[12]  A. Luque,et al.  Electron density fluctuations accelerate the branching of positive streamer discharges in air. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  U. Ebert,et al.  3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures , 2016 .

[14]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[15]  A. Tóth,et al.  Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing , 2011 .

[16]  Olivier Chanrion,et al.  A PIC-MCC code for simulation of streamer propagation in air , 2008, J. Comput. Phys..

[17]  Bardsley,et al.  Simulation of negative-streamer dynamics in nitrogen. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Alejandro Luque,et al.  Sprite beads originating from inhomogeneities in the mesospheric electron density , 2011 .

[19]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[20]  Phelps,et al.  Anisotropic scattering of electrons by N2 and its effect on electron transport. , 1985, Physical review. A, General physics.

[21]  Ute Ebert,et al.  Density models for streamer discharges: Beyond cylindrical symmetry and homogeneous media , 2010, J. Comput. Phys..

[22]  G. Georghiou,et al.  A two-dimensional, finite-element, flux-corrected transport algorithm for the solution of gas discharge problems , 2000 .

[23]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[24]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[25]  W. Hundsdorfer,et al.  Interaction of streamer discharges in air and other oxygen-nitrogen mixtures. , 2007, Physical review letters.

[26]  A. Luque,et al.  Probing photo-ionization: simulations of positive streamers in varying N2 : O2-mixtures , 2010, 1008.3309.

[27]  Vladimir Kolobov,et al.  Towards adaptive kinetic-fluid simulations of weakly ionized plasmas , 2012, J. Comput. Phys..

[28]  O. Ducasse,et al.  Effect of order fluid models on flue gas streamer dynamics , 2006 .

[29]  U. Ebert,et al.  The inception of pulsed discharges in air: simulations in background fields above and below breakdown , 2014, 1405.7216.

[30]  U. Ebert,et al.  Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture , 2011, 1108.1032.

[31]  M. Zahn,et al.  A Model for the Initiation and Propagation of Positive Streamers in Transformer Oil , 2008, Conference Record of the 2008 IEEE International Symposium on Electrical Insulation.

[32]  J. Lowke,et al.  Streamer propagation in air , 1997 .

[33]  Kunihide Tachibana,et al.  A Streamer-Like Atmospheric Pressure Plasma Jet (Postprint) , 2008 .

[34]  P. Williams,et al.  Experimental study of streamers in pure N2 and N2/O2 mixtures and a ≈13 cm gap , 2002 .

[35]  G. Georghiou,et al.  An Improved Finite-Element Flux-Corrected Transport Algorithm , 1999 .

[36]  A. Bourdon,et al.  Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations , 2007 .

[37]  U. Ebert,et al.  Streamer discharges can move perpendicularly to the electric field , 2014 .

[38]  Jannis Teunissen,et al.  Afivo: A framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods , 2017, Comput. Phys. Commun..

[39]  Vladimir I Kolobov,et al.  Electrostatic PIC with adaptive Cartesian mesh , 2016 .

[40]  U. Ebert,et al.  Reconnection and merging of positive streamers in air , 2008, 0810.4443.

[41]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[42]  N. Spyrou,et al.  Critical Analysis on Two-Dimensional Point-to-Plane Streamer Simulations Using the Finite Element and Finite Volume Methods , 2007, IEEE Transactions on Plasma Science.

[43]  D. Sentman,et al.  Red sprites and blue jets: Thunderstorm‐excited optical emissions in the stratosphere, mesosphere, and ionosphere , 1995 .

[44]  Dhali,et al.  Numerical simulation of streamer propagation in nitrogen at atmospheric pressure. , 1985, Physical review. A, General physics.

[45]  H. Akiyama Streamer discharges in liquids and their applications , 2000 .

[46]  Ola Widlund,et al.  Modeling of streamers in transformer oil using OpenFOAM , 2014 .

[47]  Ute Ebert,et al.  Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning , 2010 .

[48]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[49]  Chao Li,et al.  Spatially hybrid computations for streamer discharges : II. Fully 3D simulations , 2011, J. Comput. Phys..

[50]  Anne Bourdon,et al.  Numerical simulation of filamentary discharges with parallel adaptive mesh refinement , 2008, J. Comput. Phys..

[51]  D. Hartmann,et al.  A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids , 2011 .

[52]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[53]  Chao Li,et al.  Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts , 2009, J. Comput. Phys..

[54]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..

[55]  J. Paillol,et al.  A new one-dimensional moving mesh method applied to the simulation of streamer discharges , 2007 .

[56]  Ute Ebert,et al.  Boltzmann Equation Analysis of Electron Transport in a N2–O2 Streamer Discharge , 2011 .

[57]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[58]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[59]  M. Bonitz,et al.  Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges , 2016, 1608.04601.

[60]  U. Ebert,et al.  Investigation of positive streamers by double-pulse experiments, effects of repetition rate and gas mixture , 2013, 1310.4307.

[61]  B. Atherton,et al.  Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases , 2011 .

[62]  U. Ebert,et al.  Positive streamers in air and nitrogen of varying density: experiments on similarity laws , 2008, 0805.1364.

[63]  Gheorghe Popa,et al.  Stimulation of wound healing by helium atmospheric pressure plasma treatment , 2011 .

[64]  B. Zhang,et al.  A WENO Scheme for Simulating Streamer Discharge With Photoionizations , 2014, IEEE Transactions on Magnetics.