Drought Propagation in Semi-Arid River Basins in Latin America: Lessons from Mexico to the Southern Cone

Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries.

[1]  Thorsten Wagener,et al.  Drought in a human-modified world : reframing drought definitions, understanding, and analysis approaches , 2016 .

[2]  S. Vicente‐Serrano,et al.  Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring , 2014 .

[3]  J. L. Vázquez,et al.  Agricultura y manejo sustentable del acuífero de la Costa de Hermosillo , 2016 .

[4]  M. Beniston,et al.  Water availability, use and governance in the wine producing region of Mendoza, Argentina , 2015 .

[5]  Demetris Koutsoyiannis,et al.  A quick gap filling of missing hydrometeorological data , 2014 .

[6]  Daniel S. Wilks,et al.  Impacts of Climate Change on Irrigated Agriculture in the Maipo Basin, Chile: Reliability of Water Rights and Changes in the Demand for Irrigation , 2012 .

[7]  Lukas Gudmundsson,et al.  Candidate Distributions for Climatological Drought Indices (SPI and SPEI) , 2013 .

[8]  H. Lanen,et al.  Propagation and spatial distribution of drought in a groundwater catchment , 2006 .

[9]  L. Tallaksen,et al.  Space–time modelling of catchment scale drought characteristics , 2009 .

[10]  S. Vicuña,et al.  Assessing water demands and coverage sensitivity to climate change in the urban and rural sectors in central chile , 2014 .

[11]  H. V. Lanen Drought propagation through the hydrological cycle , 2006 .

[12]  Yi Y. Liu,et al.  Trend-preserving blending of passive and active microwave soil moisture retrievals , 2012 .

[13]  D. Wilhite,et al.  CHAPfER2UNDERSTANDING THE DROUGHT PHENOMENON:THE ROLE OF DEFINITIONS , 1985 .

[14]  Amir AghaKouchak,et al.  Water and climate: Recognize anthropogenic drought , 2015, Nature.

[15]  Sergio M. Vicente-Serrano,et al.  Accurate Computation of a Streamflow Drought Index , 2012 .

[16]  Jason S. Sibold,et al.  Changes in Andes snow cover from MODIS data, 2000–2016 , 2018 .

[17]  M. Hayes,et al.  Measuring Economic Impacts of Drought: A Review and Discussion , 2011 .

[18]  B. Luckman,et al.  Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. , 2010 .

[19]  J. Hannaford,et al.  From meteorological to hydrological drought using standardised indicators , 2015 .

[20]  Steven M. Quiring,et al.  Developing Objective Operational Definitions for Monitoring Drought , 2009 .

[21]  I. Nalbantis Evaluation of a Hydrological Drought Index , 2009 .

[22]  Jarosław Zawadzki,et al.  SMOS data as a source of the agricultural drought information: Case study of the Vistula catchment, Poland , 2017 .

[23]  S. Vicente‐Serrano,et al.  A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index , 2009 .

[24]  Martha C. Anderson,et al.  Using Temporal Changes in Drought Indices to Generate Probabilistic Drought Intensification Forecasts , 2015 .

[25]  Derechos de agua y gestión por cuencas en México: El caso del río Sonora , 2015 .

[26]  F. Meza,et al.  Improving Stochastic Modelling of Daily Rainfall Using the ENSO Index: Model Development and Application in Chile , 2018 .

[27]  Richard G. Allen,et al.  Estimating Reference Evapotranspiration Under Inaccurate Data Conditions , 2002 .

[28]  Hugo Carrão,et al.  An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[29]  V. Singh,et al.  Drought modeling-A review , 2011 .

[30]  N. Guttman COMPARING THE PALMER DROUGHT INDEX AND THE STANDARDIZED PRECIPITATION INDEX 1 , 1998 .

[31]  R. Heim A Review of Twentieth-Century Drought Indices Used in the United States , 2002 .

[32]  A. Aghakouchak,et al.  Multivariate Standardized Drought Index: A parametric multi-index model , 2013 .

[33]  Wolfgang Wagner,et al.  Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[34]  B. Timbal,et al.  The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society , 2013 .

[35]  José Martínez-Fernández,et al.  Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index , 2016 .

[36]  H. V. Van Lanen,et al.  Hydrology needed to manage droughts: the 2015 European case , 2016 .

[37]  Dara Entekhabi,et al.  Drought monitoring with soil moisture active passive (SMAP) measurements. , 2017 .

[38]  Yi Y. Liu,et al.  ESA CCI Soil Moisture for improved Earth system understanding : State-of-the art and future directions , 2017 .

[39]  Ricardo Villalba,et al.  Snowpack Variations in the Central Andes of Argentina and Chile, 1951–2005: Large-Scale Atmospheric Influences and Implications for Water Resources in the Region , 2006 .

[40]  Mauricio Zambrano-Bigiarini,et al.  The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation , 2017 .

[41]  D. Hannah,et al.  Multi-method assessment of reservoir effects on hydrological droughts in an arid region , 2016 .

[42]  Enrique R. Vivoni,et al.  Exploring the application of participatory modeling approaches in the Sonora River Basin, Mexico , 2014, Environ. Model. Softw..

[43]  Michael J. Hayes,et al.  The effect of the length of record on the standardized precipitation index calculation , 2005 .

[44]  K. Stahl,et al.  Response to comment on ‘Candidate Distributions for Climatological Drought Indices (SPI and SPEI)’ , 2016 .

[45]  J. L. van Genderen,et al.  Drought: past problems and future scenarios , 2012, Int. J. Digit. Earth.

[46]  S. Shukla,et al.  Use of a standardized runoff index for characterizing hydrologic drought , 2008 .

[47]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[48]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .

[49]  N. Guttman ACCEPTING THE STANDARDIZED PRECIPITATION INDEX: A CALCULATION ALGORITHM 1 , 1999 .

[50]  Mohammad Reza Keshavarz,et al.  Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data , 2014 .

[51]  Jose Raul Romo-Leon,et al.  Using remote sensing tools to assess land use transitions in unsustainable arid agro-ecosystems , 2014 .

[52]  Santiago Beguería,et al.  Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge et al. , 2016 .

[53]  F. Meza,et al.  A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: application to the Maipo Basin, Chile , 2015, Theoretical and Applied Climatology.