Mechanosensitive Adhesion Explains Stepping Motility in Amoeboid Cells.

[1]  Caleb K. Chan,et al.  Cytoplasmic Flow and Mixing Due to Deformation of Motile Cells. , 2017, Biophysical journal.

[2]  Pere Roca-Cusachs,et al.  Amoebae as Mechanosensitive Tanks. , 2017, Biophysical journal.

[3]  D. Yue,et al.  Interplay between motility and cell-substratum adhesion in amoeboid cells. , 2015, Biomicrofluidics.

[4]  Begoña Álvarez-González,et al.  Three-dimensional balance of cortical tension and axial contractility enables fast amoeboid migration. , 2015, Biophysical journal.

[5]  M Cristina Marchetti,et al.  Geometry regulates traction stresses in adherent cells. , 2014, Biophysical journal.

[6]  R. Firtel,et al.  Both contractile axial and lateral traction force dynamics drive amoeboid cell motility , 2014, The Journal of cell biology.

[7]  E. A. Novikova,et al.  Contractile fibers and catch-bond clusters: a biological force sensor? , 2013, Biophysical journal.

[8]  Juan Carlos del Alamo,et al.  Distribution of Traction Forces and Intracellular Markers Associated with Shape Changes During Amoeboid Cell Migration , 2013, 1309.2686.

[9]  Juan C. del Álamo,et al.  Three-Dimensional Quantification of Cellular Traction Forces and Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy , 2013, PloS one.

[10]  D. Caillerie,et al.  Nonlinear elasticity of cross-linked networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Rakshit,et al.  Ideal, catch, and slip bonds in cadherin adhesion , 2012, Proceedings of the National Academy of Sciences.

[12]  W. Rappel,et al.  Innate Non-Specific Cell Substratum Adhesion , 2012, PloS one.

[13]  R. Firtel,et al.  The SCAR/WAVE complex is necessary for proper regulation of traction stresses during amoeboid motility , 2011, Molecular biology of the cell.

[14]  C. M. Edwards,et al.  Force localization in contracting cell layers. , 2011, Physical review letters.

[15]  Manfred Radmacher,et al.  Keratocyte lamellipodial protrusion is characterized by a concave force-velocity relation. , 2011, Biophysical journal.

[16]  A. Engler,et al.  Preparation of Hydrogel Substrates with Tunable Mechanical Properties , 2010, Current protocols in cell biology.

[17]  Sean X. Sun,et al.  A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells , 2010, Proceedings of the National Academy of Sciences.

[18]  Juan C. del Álamo,et al.  Myosin II Is Essential for the Spatiotemporal Organization of Traction Forces during Cell Motility , 2010, Molecular biology of the cell.

[19]  J. Spatz,et al.  Adaptive force transmission in amoeboid cell migration , 2009, Nature Cell Biology.

[20]  Andrés J. García,et al.  Demonstration of catch bonds between an integrin and its ligand , 2009, The Journal of cell biology.

[21]  David J Odde,et al.  Traction Dynamics of Filopodia on Compliant Substrates , 2008, Science.

[22]  Yoshiaki Iwadate,et al.  Actin-based propulsive forces and myosin-II-based contractile forces in migrating Dictyostelium cells , 2008, Journal of Cell Science.

[23]  Pablo A. Iglesias,et al.  Interactions between Myosin and Actin Crosslinkers Control Cytokinesis Contractility Dynamics and Mechanics , 2008, Current Biology.

[24]  A. Nagasaki,et al.  Overlapping Functions of the Two Talin Homologues in Dictyostelium , 2008, Eukaryotic Cell.

[25]  Alberto Aliseda,et al.  Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry , 2007, Proceedings of the National Academy of Sciences.

[26]  Micah Dembo,et al.  Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement , 2007, Journal of Cell Science.

[27]  Manfred Radmacher,et al.  Direct measurement of the lamellipodial protrusive force in a migrating cell , 2006, The Journal of cell biology.

[28]  S. Charette,et al.  An adhesion molecule in free‐living Dictyostelium amoebae with integrin β features , 2006, EMBO reports.

[29]  Julie A. Theriot,et al.  Loading history determines the velocity of actin-network growth , 2005, Nature Cell Biology.

[30]  C. Wolgemuth,et al.  Lamellipodial contractions during crawling and spreading. , 2005, Biophysical journal.

[31]  M. Titus The Role of Talin and Myosin VII in Adhesion – A FERM Connection , 2004 .

[32]  R. Insall,et al.  Solving the WAVE function , 2004, Nature Cell Biology.

[33]  S. Yumura,et al.  Dynamics of novel feet of Dictyostelium cells during migration , 2004, Journal of Cell Science.

[34]  P. Friedl,et al.  Tumour-cell invasion and migration: diversity and escape mechanisms , 2003, Nature Reviews Cancer.

[35]  S. Yumura,et al.  Myosin II contributes to the posterior contraction and the anterior extension during the retraction phase in migrating Dictyostelium cells , 2003, Journal of Cell Science.

[36]  J. Condeelis,et al.  Cell motility: insights from the backstage , 2002, Nature Cell Biology.

[37]  Peter Friedl,et al.  Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement , 2001, Journal of leukocyte biology.

[38]  P. Fisher Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity: Richard H. Kessin. Bibliography by Jakob Franke, Cambridge University Press, Cambridge, UK. Publication Date: 11th January, 2001. xiv+294 pp. ISBN 0-521-58364-0 (hardback). Price: £55.00 (US$90.00) , 2001 .

[39]  H. P. Ting-Beall,et al.  Myosin I contributes to the generation of resting cortical tension. , 1999, Biophysical journal.

[40]  C. Parent,et al.  A cell's sense of direction. , 1999, Science.

[41]  J. Dai,et al.  A Role for Dictyostelium RacE in Cortical Tension and Cleavage Furrow Progression , 1998, The Journal of cell biology.

[42]  A. Hall,et al.  Rho GTPases and the actin cytoskeleton. , 1998, Science.

[43]  G. Gerisch,et al.  Talin-Null Cells of Dictyostelium Are Strongly Defective in Adhesion to Particle and Substrate Surfaces and Slightly Impaired in Cytokinesis , 1997, The Journal of cell biology.

[44]  G. Oster,et al.  Cell motility driven by actin polymerization. , 1996, Biophysical journal.

[45]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[46]  J. Condeelis,et al.  Genetic deletion of ABP-120 alters the three-dimensional organization of actin filaments in Dictyostelium pseudopods , 1995, The Journal of cell biology.

[47]  T. Stossel,et al.  The E. Donnall Thomas Lecture, 1993. The machinery of blood cell movements , 1994 .

[48]  D A Lauffenburger,et al.  Mathematical model for the effects of adhesion and mechanics on cell migration speed. , 1991, Biophysical journal.

[49]  S. Yumura,et al.  Fluorescence-mediated visualization of actin and myosin filaments in the contractile membrane-cytoskeleton complex of Dictyostelium discoideum. , 1990, Cell structure and function.

[50]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[51]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[52]  Juan Carlos del Alamo,et al.  Spatiotemporal Analysis of Traction Work Produced by Migrating Amoeboid Cells , 2010 .

[53]  Dennis Discher,et al.  Substrate compliance versus ligand density in cell on gel responses. , 2004, Biophysical journal.

[54]  Thomas,et al.  The Machinery of Blood Cell Movements , 2002 .

[55]  Y. Wang,et al.  Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. , 1998, Methods in enzymology.

[56]  Kenneth M. Yamada,et al.  Molecular interactions in cell adhesion complexes. , 1997, Current opinion in cell biology.

[57]  J. Murray,et al.  Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. , 1994, Cell motility and the cytoskeleton.

[58]  P. Devreotes,et al.  Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. , 1988, Annual review of cell biology.