Steady state approximations of limited processor sharing queues in heavy traffic

We investigate steady state properties of limited processor sharing queues in heavy traffic. Our analysis builds on previously obtained process limit theorems, and requires the interchange of steady state and heavy traffic limits, which are established by a coupling argument. The limit theorems yield explicit approximations of the steady state queue length and response time distribution in heavy traffic, of which the quality is supported by simulation experiments.

[1]  Erich M. Nahum,et al.  A method for transparent admission control and request scheduling in e-commerce web sites , 2004, WWW '04.

[2]  H. C. Gromoll Diffusion approximation for a processor sharing queue in heavy traffic , 2004, math/0405298.

[3]  Adam Wierman,et al.  How to Determine a Good Multi-Programming Level for External Scheduling , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[4]  Bert Zwart,et al.  Diffusion Limits of Limited Processor Sharing Queues , 2009, 0912.5306.

[5]  Hans-Ulrich Heiß,et al.  Adaptive Load Control in Transaction Processing Systems , 1991, VLDB.

[6]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[7]  Amarjit Budhiraja,et al.  Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic , 2009, Math. Oper. Res..

[8]  Erich M. Nahum,et al.  Yaksha: a self-tuning controller for managing the performance of 3-tiered Web sites , 2004, Twelfth IEEE International Workshop on Quality of Service, 2004. IWQOS 2004..

[9]  Russ Blake,et al.  Optimal control of thrashing , 1982, SIGMETRICS '82.

[10]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[11]  Peter J. Denning,et al.  Optimal multiprogramming , 2004, Acta Informatica.

[12]  Misja Nuyens,et al.  Monotonicity in the Limited Processor-Sharing Queue , 2008 .

[13]  Bert Zwart,et al.  An extension of the square root law of TCP , 2009, Ann. Oper. Res..

[14]  D. Gamarnik,et al.  Validity of heavy traffic steady-state approximations in generalized Jackson networks , 2004, math/0410066.

[15]  Philippe Robert,et al.  Fluid Limits for Processor-Sharing Queues with Impatience , 2008, Math. Oper. Res..

[16]  Bert Zwart,et al.  Law of Large Number Limits of Limited Processor-Sharing Queues , 2009, Math. Oper. Res..

[17]  Ronald W. Wolff,et al.  A Review of Regenerative Processes , 1993, SIAM Rev..

[18]  Mor Harchol-Balter,et al.  On the inapproximability of M/G/K: why two moments of job size distribution are not enough , 2010, Queueing Syst. Theory Appl..

[19]  Lester Lipsky,et al.  Modelling Restricted Processor Sharing , 2006, PDPTA.

[20]  Benjamin Avi-Itzhak,et al.  Expected Response Times in a Non-Symmetric Time Sharing Queue with a Limited Number of Service Positions , 1988 .

[21]  Lester Lipsky,et al.  An Analytical Model for Computer Systems with Non-Exponential Service Times and Memory Thrashing Overhead , 2007, PDPTA.

[22]  Amber L. Puha,et al.  THE FLUID LIMIT OF A HEAVILY LOADED PROCESSOR SHARING QUEUE , 2002 .

[23]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[24]  Lukasz Kruk,et al.  Heavy traffic limit for processor sharing queue with soft deadlines , 2007, 0707.4600.

[25]  Sergei Grishechkin GI/G/1 processor sharing queue in heavy traffic , 1994, Advances in Applied Probability.

[26]  Ken Thompson,et al.  The UNIX time-sharing system , 1974, CACM.