A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the $$\text{ o-Ps }\rightarrow 3\gamma $$o-Ps→3γ decays with angular and energy resolution equal to $$\sigma (\theta ) \approx {0.4^{\circ }}$$σ(θ)≈0.4∘ and $$\sigma (E) \approx 4.1\,{\mathrm{keV}}$$σ(E)≈4.1keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

[1]  J J Vaquero,et al.  Positron range estimations with PeneloPET , 2013, Physics in medicine and biology.

[2]  S. Gninenko,et al.  POSITRONIUM PHYSICS BEYOND THE STANDARD MODEL , 2002 .

[3]  J. Karp,et al.  Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[4]  V. Rubakov,et al.  Brane world: Disappearing massive matter , 2000, hep-th/0006046.

[5]  M. Palka,et al.  Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph , 2016, Physics in medicine and biology.

[6]  C Lartizien,et al.  GATE: a simulation toolkit for PET and SPECT. , 2004, Physics in medicine and biology.

[7]  E. Lifshitz,et al.  Relativistic Quantum Theory, Part 1 , 1971 .

[8]  M. Palka,et al.  Test of a single module of the J-PET scanner based on plastic scintillators , 2014, 1407.7395.

[9]  O. Klein,et al.  Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac , 1929 .

[10]  B. Fiscella,et al.  Positronium annihilation in magnetic fields up to 21 kG , 1971 .

[11]  Gidley,et al.  New precision measurement of the decay rate of singlet positronium. , 1994, Physical review letters.

[12]  M. Palka,et al.  A novel method based solely on FPGA units enabling measurement of time and charge of analog signals in Positron Emission Tomography , 2013 .

[13]  M. Desco,et al.  PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[14]  A. Gajos,et al.  Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument , 2015, 1503.05188.

[15]  M. Palka,et al.  Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography , 2014, 1407.8293.

[16]  Evgenii Mikhailovich Lifshitz,et al.  Relativistic quantum theory , 1971 .

[17]  M. Palka,et al.  Searches for discrete symmetries violation in ortho-positronium decay using the J-PET detector , 2015, 1509.01114.

[18]  D. Gidley,et al.  Resolution of the orthopositronium-lifetime puzzle. , 2003, Physical review letters.

[19]  J. Smyrski,et al.  ^^ Bio-Algorithms and Med-Systems 14.indb , 2011 .

[20]  Michael D Harpen Positronium: review of symmetry, conserved quantities and decay for the radiological physicist. , 2004, Medical physics.

[21]  Nicholas M. Spyrou,et al.  Three-gamma annihilation imaging in positron emission tomography , 2004, IEEE Transactions on Medical Imaging.

[22]  S. Asai,et al.  Search for CP violation in positronium decay. , 2009, Physical review letters.

[23]  C. Leroy,et al.  Principles of Radiation Interaction in Matter and Detection , 2004 .

[24]  A. Gajos,et al.  Sampling FEE and Trigger-less DAQ for the J-PET Scanner , 2016, 1602.05251.

[25]  M. Palka,et al.  A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals , 2014, 1412.6963.

[26]  V. Bettinardi,et al.  Physical performance of the new hybrid PET∕CT Discovery-690. , 2011, Medical physics.

[27]  W. Bernreuther,et al.  How to testCP, T, andCPT invariance in the three photon decay of polarized3S1 positronium , 1988 .

[28]  C. Champion Moving from organ dose to microdosimetry: contribution of the Monte Carlo simulations , 2005 .

[29]  S. Gninenko,et al.  Positronium portal into hidden sector: a new experiment to search for mirror dark matter , 2010, 1005.4802.

[30]  J Nucl Med , 2010 .

[31]  A. Gajos,et al.  Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector , 2016, 1602.07528.

[32]  David M. Schrader,et al.  Positron and Positronium Chemistry , 1988 .

[33]  M. Palka,et al.  Determination of the 3\gamma fraction from positron annihilation in mesoporous materials for symmetry violation experiment with J-PET scanner , 2016, 1602.05376.

[34]  S. Freedman,et al.  Search for CPT-odd decays of positronium. , 2003, Physical review letters.

[35]  A. Gajos,et al.  Potential of the J-PET detector for studies of discrete symmetries in decays of positronium atom - a purely leptonic system , 2016, 1602.05226.