A nonlinear programming approach to space shuttle trajectory optimization

Space shuttle trajectory design requires the optimization of highly-constrained, branched, atmospheric trajectories. This paper presents a general mathematical model for trajectory optimization incorporating multiple simulation sections, state variable discontinuities, subarc elimination, branching, and six types of equality and inequality constraints. A solution is sought using a nonlinear programming approach based on SUMT, the sequential unconstrained minimization technique. Results of the numerical solution of a highly constrained space shuttle reentry problem are presented.

[1]  Anthony V. Fiacco,et al.  The Sequential Unconstrained Minimization Technique for Nonlinear Programing, a Primal-Dual Method , 1964 .

[2]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[3]  D. Tabak,et al.  Applications of mathematical programming techniques in optimal control: A survey , 1970 .

[4]  A. T. Markos,et al.  Applications of a mathematical programming technique to finite thrust rocket trajectory optimization , 1971 .

[5]  I. L. Johnson,et al.  Optimal shuttle trajectory - Vehicle design using parameter optimization , 1971 .

[6]  J. D. Mason,et al.  Space Tug Performance Optimization , 1972 .

[7]  E. Polak,et al.  Theory of optimal control and mathematical programming , 1969 .

[8]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[9]  D. Tabak An algorithm for real-time computer control of a tracking system with a nonlinearity , 1970 .

[10]  R. Brusch,et al.  Solution of highly constrained optimal control problems using nonlinear programming , 1970 .

[11]  Daniel Tabak,et al.  Optimal control by mathematical programming , 1971 .

[12]  Thomas L. Vincent,et al.  Disconnected optimal trajectories , 1969 .

[13]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[14]  G. McCormick,et al.  A Generalization of the Method of Balakrishnan: Inequality Constraints and Initial Conditions , 1970 .

[15]  A. Balakrishnan On a new computing technique in optimal control and its application to minimal-time flight profile optimization , 1969 .

[16]  L. Lasdon,et al.  An interior penalty method for inequality constrained optimal control problems , 1967, IEEE Transactions on Automatic Control.