An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics
暂无分享,去创建一个
[1] William H. Press,et al. Numerical recipes , 1990 .
[2] Nikolai V. Pogorelov,et al. Shock-Capturing Approach and Nonevolutionary Solutions in Magnetohydrodynamics , 1996 .
[3] S. A. E. G. Falle,et al. An upwind numerical scheme for relativistic hydrodynamics with a general equation of state , 1996 .
[4] Dinshaw S. Balsara,et al. Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .
[5] S. Komissarov. Numerical simulations of relativistic magnetized jets , 1999 .
[6] N. Bucciantini,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .
[7] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[8] Dinshaw S. Balsara,et al. Riemann Solver for Relativistic Hydrodynamics , 1994 .
[9] Martin J. Rees,et al. Theory of extragalactic radio sources , 1984 .
[10] Stanley Osher,et al. Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids , 1998 .
[11] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[12] Rho-Shin Myong,et al. On Godunov-Type Schemes for Magnetohydrodynamics , 1998 .
[13] E. Muller,et al. GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.
[14] Angelo Marcello Anile,et al. Relativistic fluids and magneto-fluids , 2005 .
[15] Philip A. Hughes,et al. Simulations of Relativistic Extragalactic Jets , 1994 .
[16] Francesco Miniati,et al. A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .
[17] Paul R. Woodward,et al. On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .
[18] M. Rees,et al. Relativistic fireballs: energy conversion and time-scales , 1992 .
[19] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[20] General relativistic simulations of early jet formation in a rapidly rotating black hole magnetosphere , 1999, astro-ph/9907435.
[21] S. Komissarov,et al. A Godunov-type scheme for relativistic magnetohydrodynamics , 1999 .
[22] R. Mutel,et al. A Two-dimensional Simulation of a Relativistic Magnetized Jet , 1996 .
[23] Alexander Kurganov,et al. Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..
[24] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[25] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[26] I. Mirabel,et al. A superluminal source in the Galaxy , 1994, Nature.
[27] P. Londrillo,et al. High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.
[28] Rosa Donat,et al. A Flux-Split Algorithm applied to Relativistic Flows , 1998 .
[29] Claus-Dieter Munz,et al. New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .
[30] D. Meier,et al. Magnetohydrodynamic production of relativistic jets. , 2001, Science.
[31] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[32] Dinshaw S. Balsara,et al. Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .
[33] S.S.M. Wong,et al. Relativistic Hydrodynamics and Essentially Non-oscillatory Shock Capturing Schemes , 1995 .
[34] J. Sakai,et al. Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected into an Oblique Magnetic Field , 1998 .
[35] Kazunari Shibata,et al. Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .