An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics

A third order shock-capturing numerical scheme for three-dimensional special relativistic magnetohydrodynamics (3-D RMHD) is presented and validated against several numerical tests. The simple and efficient central scheme described in Paper I (Del Zanna and Bucciantini, Astron. Astrophys., 390, 1177--1186, 2002) for relativistic hydrodynamics is here extended to the magnetic case by following the strategies prescribed for classical MHD by Londrillo and Del Zanna (Astrophys. J., 530, 508--524, 2000). The scheme avoids completely spectral decomposition into characteristic waves, computationally expensive and subject to many degenerate cases in the magnetic case, while it makes use of a two-speed Riemann solver that just require the knowledge of the two local fast magnetosonic velocities. Moreover, the onset of spurious magnetic monopoles, which is a typical problem for multi-dimensional MHD upwind codes, is prevented by properly taking into account the solenoidal constraint and the specific antisymmetric nature of the induction equation. Finally, the extension to generalized orthogonal curvilinear coordinate systems is included, thus the scheme is ready to incorporate general relativistic (GRMHD) effects.

[1]  William H. Press,et al.  Numerical recipes , 1990 .

[2]  Nikolai V. Pogorelov,et al.  Shock-Capturing Approach and Nonevolutionary Solutions in Magnetohydrodynamics , 1996 .

[3]  S. A. E. G. Falle,et al.  An upwind numerical scheme for relativistic hydrodynamics with a general equation of state , 1996 .

[4]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[5]  S. Komissarov Numerical simulations of relativistic magnetized jets , 1999 .

[6]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  Dinshaw S. Balsara,et al.  Riemann Solver for Relativistic Hydrodynamics , 1994 .

[9]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[10]  Stanley Osher,et al.  Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids , 1998 .

[11]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[12]  Rho-Shin Myong,et al.  On Godunov-Type Schemes for Magnetohydrodynamics , 1998 .

[13]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[14]  Angelo Marcello Anile,et al.  Relativistic fluids and magneto-fluids , 2005 .

[15]  Philip A. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994 .

[16]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[17]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[18]  M. Rees,et al.  Relativistic fireballs: energy conversion and time-scales , 1992 .

[19]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[20]  General relativistic simulations of early jet formation in a rapidly rotating black hole magnetosphere , 1999, astro-ph/9907435.

[21]  S. Komissarov,et al.  A Godunov-type scheme for relativistic magnetohydrodynamics , 1999 .

[22]  R. Mutel,et al.  A Two-dimensional Simulation of a Relativistic Magnetized Jet , 1996 .

[23]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[24]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[25]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[26]  I. Mirabel,et al.  A superluminal source in the Galaxy , 1994, Nature.

[27]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[28]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[29]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[30]  D. Meier,et al.  Magnetohydrodynamic production of relativistic jets. , 2001, Science.

[31]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[32]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[33]  S.S.M. Wong,et al.  Relativistic Hydrodynamics and Essentially Non-oscillatory Shock Capturing Schemes , 1995 .

[34]  J. Sakai,et al.  Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected into an Oblique Magnetic Field , 1998 .

[35]  Kazunari Shibata,et al.  Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .