Fuzzy Sliding Mode Control of a Magnetic Ball Suspension System

This paper presents an adaptive fuzzy estimator sliding mode position control design for robust stabilization and disturbance rejection for a magnetic ball suspension system (MBSS). In general, the conventional sliding mode control design assumes that the upper boundary of the parameter variations and external disturbances is known and the sign function is used. It causes high frequency chattering and high gain phenomenon. In this paper, we propose a novel adaptive fuzzy estimator sliding mode control for the MBSS to avoid the high gain and reduce the chattering magnitude. The parameter variation and external disturbance estimator is designed to estimate the unknown lumped uncertainty values in real-time. This is different from the conventional fuzzy sliding mode control which estimates the unknown upper boundary uncertainty. This method utilizes a Lyapunov function candidate to guarantee convergence and asymptotically track the MBSS position commands. We employ experiments to validate the proposed method.

[1]  B. V. Jayawant Electromagnetic levitation and suspension techniques , 1981 .

[2]  D. Cho,et al.  Sliding mode and classical controllers in magnetic levitation systems , 1993, IEEE Control Systems.

[3]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[4]  Jing-Chung Shen,et al.  H∞ Control and Sliding Mode Control of Magnetic Levitation System , 2008 .

[5]  Faa-Jeng Lin,et al.  Novel sliding mode controller for synchronous motor drive , 1998 .

[6]  Tsu-Tian Lee,et al.  Robust self-organizing fuzzy-neural control using asymmetric Gaussian membership functions , 2007 .

[7]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Salim Labiod,et al.  A neuro-fuzzy-sliding mode controller using nonlinear sliding surface applied to the coupled tanks system , 2009, Int. J. Autom. Comput..

[10]  Zi-Jiang Yang,et al.  Robust position control of a magnetic levitation system via dynamic surface control technique , 2004, IEEE Transactions on Industrial Electronics.

[11]  Okyay Kaynak,et al.  The fusion of computationally intelligent methodologies and sliding-mode control-a survey , 2001, IEEE Trans. Ind. Electron..

[12]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[13]  Jian-Shiang Chen,et al.  A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems , 1994, IEEE Trans. Ind. Electron..

[14]  Chin E. Lin,et al.  Force model identification for magnetic suspension systems via magnetic field measurement , 1993 .

[15]  K. D. Young Variable Structure Control for Robotics and Aerospace Applications , 1993 .

[16]  John Y. Hung,et al.  Magnetic bearing control using fuzzy logic , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[17]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[18]  H.-k. Chiang,et al.  Integral variable-structure grey control for magnetic levitation system , 2006 .

[19]  Chin E. Lin,et al.  Exact model identification for magnetic suspension system via magnetic field measurement , 1992, [1992] Conference Record IEEE Instrumentation and Measurement Technology Conference.

[20]  K M Passino,et al.  Dynamically focused fuzzy learning control , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Rong-Jong Wai,et al.  Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer , 2000, IEEE Trans. Ind. Electron..

[22]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[23]  Ahmed El Hajjaji,et al.  Modeling and nonlinear control of magnetic levitation systems , 2001, IEEE Trans. Ind. Electron..

[24]  Tung-Kuan Liu,et al.  Hybrid Taguchi-genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[25]  Tzuu-Hseng S. Li,et al.  Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system , 2007 .

[26]  Rong-Jong Wai,et al.  Fuzzy neural network sliding-mode position controller for induction servo motor drive , 1999 .

[27]  Tung-Kuan Liu,et al.  Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm , 2006, IEEE Trans. Neural Networks.

[28]  Zi-Jiang Yang,et al.  Adaptive robust nonlinear control of a magnetic levitation system via DSC technique , 2001, Autom..

[29]  H. K. Chiang,et al.  Integral variable structure controller with grey prediction for synchronous reluctance motor drive , 2004 .

[30]  Tian-Hua Liu,et al.  A fuzzy sliding-mode controller design for a synchronous reluctance motor drive , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Tzuu-Hseng S. Li,et al.  Multiloop control of thyristor-driven magnetic levitation system , 1995 .