Simulating the Strategic Adaptation of Organizations Using OrgSwarm

This chapter extends the particle swarm metaphor into the domain of organization science. A simulation model (OrgSwarm) is introduced which can be used to simulate the adaptation of a population of organizations on a strategic landscape. The simulator embeds a number of features including organizational inertia and dynamic landscapes. These features allow the examination of a wide range of real-life scenarios. The chapter also reports the results of a number of simulation

[1]  M. Hannan,et al.  Structural Inertia and Organizational Change , 1984 .

[2]  M. Hannan,et al.  The Population Ecology of Organizations , 1977, American Journal of Sociology.

[3]  Stuart A. Kauffman,et al.  Optimal search on a technology landscape , 2000 .

[4]  Brendan Kitts,et al.  Intellectual capital: from intangible assets to fitness landscapes , 2001, Expert Syst. Appl..

[5]  M. Porter Competitive Advantage: Creating and Sustaining Superior Performance , 1985 .

[6]  W. Macready,et al.  Landscapes: A Natural Extension of Search Theory , 1999 .

[7]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[8]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  M. Tushman,et al.  Ambidextrous Organizations: Managing Evolutionary and Revolutionary Change , 1996 .

[10]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  Daniel A. Levinthal,et al.  Looking Forward and Looking Backward: Cognitive and Experiential Search , 2000 .

[12]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[13]  Tim M. Blackwell,et al.  Swarms in Dynamic Environments , 2003, GECCO.

[14]  Toby E. Stuart,et al.  Local search and the evolution of technological capabilities , 2007 .

[15]  A. Bandura Social Foundations of Thought and Action: A Social Cognitive Theory , 1985 .

[16]  M. Porter What is strategy , 2000 .

[17]  Daniel A. Levinthal Random Walks and Organizational Mortality , 1991 .

[18]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[19]  J. Stevens,et al.  Animal Intelligence , 1883, Nature.

[20]  Warren Boeker,et al.  Strategic Change: The Effects Of Founding And History , 1989 .

[21]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[22]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  Daniel A. Levinthal Adaptation on rugged landscapes , 1997 .

[24]  John Komlos,et al.  Looking Backward and Looking Forward , 2004, Social Science History.

[25]  Jan W. Rivkin Imitation of Complex Strategies , 2000 .

[26]  James Kennedy,et al.  Minds and Cultures: Particle Swarm Implications For Beings in Sociocognitive Space , 1999, Adapt. Behav..

[27]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[28]  M. Porter,et al.  Contextuality Within Activity Systems , 2000 .

[29]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.