An overview of sensor calibration inter-comparison and applications

Long-term climate data records (CDR) are often constructed using observations made by multiple Earth observing sensors over a broad range of spectra and a large scale in both time and space. These sensors can be of the same or different types operated on the same or different platforms. They can be developed and built with different technologies and are likely operated over different time spans. It has been known that the uncertainty of climate models and data records depends not only on the calibration quality (accuracy and stability) of individual sensors, but also on their calibration consistency across instruments and platforms. Therefore, sensor calibration inter-comparison and validation have become increasingly demanding and will continue to play an important role for a better understanding of the science product quality. This paper provides an overview of different methodologies, which have been successfully applied for sensor calibration inter-comparison. Specific examples using different sensors, including MODIS, AVHRR, and ETM+, are presented to illustrate the implementation of these methodologies.

[1]  Xiaoxiong Xiong,et al.  MODIS Reflective Solar Bands On-Orbit Lunar Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  William J. Emery,et al.  Achieving satellite instrument calibration for climate change , 2007 .

[3]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[4]  Claire L. Parkinson,et al.  Aqua: an Earth-Observing Satellite mission to examine water and other climate variables , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Xiaoxiong Xiong,et al.  Overview of NASA Earth Observing Systems Terra and Aqua moderate resolution imaging spectroradiometer instrument calibration algorithms and on-orbit performance , 2009 .

[6]  Kurtis J. Thome,et al.  Vicarious calibration of Aqua and Terra MODIS , 2003, SPIE Optics + Photonics.

[7]  Xiaoxiong Xiong,et al.  An overview of MODIS radiometric calibration and characterization , 2006 .

[8]  Stephen G. Warren,et al.  Effect of surface roughness on bidirectional reflectance of Antarctic snow , 1998 .

[9]  Darrel L. Williams,et al.  Historical record of Landsat global coverage: mission operations, NSLRSDA, and International Cooperator stations , 2006 .

[10]  William L. Barnes,et al.  MODIS on-orbit calibration and characterization , 2003 .

[11]  Amit Angal,et al.  An assessment of African test sites in the context of a global network of quality-assured reference standards , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Xiaoxiong Xiong,et al.  An overview of the Earth Observing System MODIS instrument and associated data systems performance , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[13]  Limin Yang,et al.  COMPLETION OF THE 1990S NATIONAL LAND COVER DATA SET FOR THE CONTERMINOUS UNITED STATES FROM LANDSAT THEMATIC MAPPER DATA AND ANCILLARY DATA SOURCES , 2001 .

[14]  Changyong Cao,et al.  The effect of orbit drift on the calibration of the 3.7 µm channel of the AVHRR onboard NOAA-14 and its impact on night-time sea surface temperature retrievals , 2004 .

[15]  Brian Wenny,et al.  An overview of inter-comparison methodologies for Terra and Aqua MODIS calibration , 2006, SPIE Optics + Photonics.

[16]  C. Rao,et al.  Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft , 1999 .

[17]  Changyong Cao,et al.  Intersatellite Radiance Biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations , 2005 .

[18]  Brian L. Markham,et al.  Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Aisheng Wu,et al.  Intercomparison of the 11- and 12-μm bands of Terra and Aqua MODIS using NOAA-17 AVHRR , 2003, SPIE Optics + Photonics.

[20]  Peter J. Minnett,et al.  Sea-surface temperature measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Simon J. Hook,et al.  Absolute Radiometric In-Flight Validation of Mid Infrared and Thermal Infrared Data From ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe, CA/NV, USA, Automated Validation Site , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  James J. Butler,et al.  Workshop on Strategies for Calibration and Validation of Global Change Measurements , 1997 .

[23]  Darrel L. Williams,et al.  Landsat and Earth Systems Science : Development of terrestrial monitoring , 1997 .

[24]  Changyong Cao,et al.  Inter-comparison of the longwave infrared channels of MODIS and AVHRR/NOAA-16 using simultaneous nadir observations at orbit intersections , 2002, SPIE Optics + Photonics.

[25]  Peter J. Minnett,et al.  An overview of MODIS capabilities for ocean science observations , 1998, IEEE Trans. Geosci. Remote. Sens..

[26]  Xiaoxiong Xiong,et al.  Intercomparison of On-Orbit Calibration Consistency Between Terra and Aqua MODIS Reflective Solar Bands Using the Moon , 2008, IEEE Geoscience and Remote Sensing Letters.

[27]  Aisheng Wu,et al.  Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency , 2009 .

[28]  A. Wu,et al.  Assessing the consistency of AVHRR and MODIS L1B reflectance for generating Fundamental Climate Data Records , 2008 .

[29]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[31]  A. Heidinger,et al.  Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels , 2002 .

[32]  Changyong Cao,et al.  Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites for the Intersatellite Calibration of Radiometers , 2004 .

[33]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[34]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[35]  Curtis E. Woodcock,et al.  Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors , 2001 .

[36]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  Robert H. Evans,et al.  Calibration of advanced very high resolution radiometer infrared observations , 1985 .

[38]  M. Fily,et al.  Surface characterisation of the Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument , 2004 .

[39]  H. Kieffer,et al.  The Spectral Irradiance of the Moon , 2005 .

[40]  W. Barnes,et al.  Use of the Moon for Calibration and Characterization of MODIS, SeaWiFS, and VIRS , 2006 .

[41]  Robert A. Barnes,et al.  Comparison of SeaWiFS on-orbit lunar and vicarious calibrations , 2006, SPIE Optics + Photonics.

[42]  William L. Barnes,et al.  MODIS: a global imaging spectroradiometer for the Earth Observing System , 1992, Optics East.

[43]  Z. Wan,et al.  Quality assessment and validation of the MODIS global land surface temperature , 2004 .

[44]  Moira L. Steyn-Ross,et al.  Radiance calibrations for advanced very high resolution radiometer infrared channels , 1992 .

[45]  Olivier Hagolle,et al.  Remote sensing data respository for in-flight calibration of optical sensors over terrestrial targets , 1999 .

[46]  Alexander P. Trishchenko,et al.  Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA‐9 to NOAA‐16 , 2002 .

[47]  A. P. Trishchenko,et al.  Removing Unwanted Fluctuations in the AVHRR Thermal Calibration Data Using Robust Techniques , 2002 .

[48]  Jerry T. Sullivan,et al.  Corrections for detector nonlinearities and calibration inconsistencies of the infrared channels of the advanced very high resolution radiometer , 1998 .

[49]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[50]  Changyong Cao,et al.  Solar contamination effects on the infrared channels of the advanced very high resolution radiometer (AVHRR) , 2001 .

[51]  Aisheng Wu,et al.  Terra and Aqua MODIS inter‐comparison of three reflective solar bands using AVHRR onboard the NOAA‐KLM satellites , 2008 .

[52]  Aisheng Wu,et al.  On‐orbit calibration and inter‐comparison of Terra and Aqua MODIS surface temperature spectral bands , 2008 .

[53]  Xiaoxiong Xiong,et al.  Using a Cold Earth Surface Target to Characterize Long-Term Stability of the MODIS Thermal Emissive Bands , 2008, IEEE Geoscience and Remote Sensing Letters.