The properties of PMMA/DCJTB thin-film luminescent solar concentrator with various thicknesses

Abstract The PMMA/DCJTB thin-film luminescent solar concentrators (LCSs) with various thicknesses have been successfully prepared with the spin coating process. The properties of PMMA/DCJTB thin-film LSCs with various thicknesses have been studied. The cross-sectional field-emission scanning electron microscopy (FESEM) micrographs show that the thin-films on the glass substrate are very smooth. The thicknesses are 1.36 ± 0.03, 1.93 ± 0.07, 2.80 ± 0.05 and 4.00 ± 0.06 μm. The value of the absolute fluorescence quantum yield (Φf) of the as-prepared LSCs decreases from 59.09% to 51.91% when the PMMA/DCJTB thin-film thickness increases from 1.36 to 4.00 μm. The values of open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and overall power conversion efficiency (η) are 0.51 V, 29.47 mA/cm2, 65.54%, and 9.85%, respectively, for the PMMA/DCJTB thin-film LSCs with a thickness of 4.00 μm.

[1]  Alberto Quaranta,et al.  Dye-doped parylene-based thin film materials: Application to luminescent solar concentrators , 2013 .

[2]  Marinella Levi,et al.  Photo-degradation of a perylene-based organic luminescent solar concentrator: Molecular aspects and device implications , 2013 .

[3]  Ken‐Tsung Wong,et al.  Efficient and color-stable solid-state white light-emitting electrochemical cells employing red color conversion layers , 2012 .

[4]  F. Bella,et al.  Multifunctional Luminescent Down‐Shifting Fluoropolymer Coatings: A Straightforward Strategy to Improve the UV‐Light Harvesting Ability and Long‐Term Outdoor Stability of Organic Dye‐Sensitized Solar Cells , 2015 .

[5]  Cees W. M. Bastiaansen,et al.  Dual waveguide patterned luminescent solar concentrators , 2013 .

[6]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[7]  Volker Wittwer,et al.  Fluorescent planar concentrators , 1984 .

[8]  Avi Shalav,et al.  The role of polymers in the luminescence conversion of sunlight for enhanced solar cell performance , 2005 .

[9]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[10]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[11]  N. Bakker,et al.  I-V Performance and Stability Study of Dyes for Luminescent Plate Concentrators , 2007 .

[12]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[13]  J. S. Batchelder,et al.  Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. , 1979, Applied optics.

[14]  Melinda S. Hanes,et al.  Optimized excitation energy transfer in a three-dye luminescent solar concentrator , 2007 .

[15]  Xiujian Zhao,et al.  Poly(methyl methacrylate) (PMMA) doped with DCJTB for luminescent solar concentrator applications , 2015 .

[16]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[17]  Chin Kim Lo,et al.  Unsaturated polyester resin blended with MMA as potential host matrix for luminescent solar concentrator , 2012 .

[18]  B. Richards,et al.  Advanced Material Concepts for Luminescent Solar Concentrators , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Thomas Dienel,et al.  Spectral-based analysis of thin film luminescent solar concentrators , 2010 .

[20]  J. S. Batchelder,et al.  Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. , 1981, Applied optics.

[21]  M. Alsalhi,et al.  Thin-Film LSCs Based on PMMA Nanohybrid Coatings: Device Optimization and Outdoor Performance , 2013 .

[22]  Renata Reisfeld,et al.  New developments in luminescence for solar energy utilization , 2010 .

[23]  Halina Kaczmarek,et al.  Photooxidative degradation of poly(alkyl methacrylate)s , 2000 .

[24]  F. Bella,et al.  Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings , 2015 .

[25]  C. Bindhu,et al.  Effect of the Excitation Source on the Quantum-Yield Measurements of Rhodamine B Laser Dye Studied Using Thermal-Lens Technique , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[26]  Ching Wan Tang,et al.  Doped organic electroluminescent devices with improved stability , 1997 .

[27]  Daniel C. Harris,et al.  Quantitative Chemical Analysis , 1968, Nature.

[28]  Renata Reisfeld,et al.  Photostable solar concentrators based on fluorescent glass films , 1994 .

[29]  Suzanne Fery-Forgues,et al.  ARE FLUORESCENCE QUANTUM YIELDS SO TRICKY TO MEASURE? A DEMONSTRATION USING FAMILIAR STATIONERY PRODUCTS , 1999 .

[30]  W. R. Thomas,et al.  Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation. , 1982, Applied optics.

[31]  H. Killa,et al.  Laser dyes doped with poly(ST-Co-MMA) as fluorescent solar collectors and their field performance , 2005 .

[32]  M. Carrascosa,et al.  Monte Carlo simulation of the performance of PMMA luminescent solar collectors. , 1983, Applied optics.

[33]  Niccolò Aste,et al.  Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index , 2015 .

[34]  E. V. D. Kolk,et al.  Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modelling , 2012 .

[35]  Roberto Fusco,et al.  Spectral converters and luminescent solar concentrators , 2009, 0907.3551.

[36]  M. El‐Mansy,et al.  Performance evaluation of thin-film solar concentrators for greenhouse applications , 2007 .

[37]  Kenji Koizumi,et al.  Simulation and fabrication of flat-plate concentrator modules , 2003 .