Optimization of reinforcement content and sliding distance for AlSi7Mg/SiCp composites using response surface methodology

[1]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[2]  P. Rohatgi,et al.  Tribological behavior and surface analysis of tribodeformed AI Alloy-50 Pet graphite particle composites , 1991 .

[3]  Ahmet T. Alpas,et al.  Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites , 1994 .

[4]  Shibata Kazuo,et al.  Tribological application of MMC for reducing engine weight , 1994 .

[5]  Jianqing Jiang,et al.  Dry sliding wear behaviour of Al2O3–Al composites produced by centrifugal force infiltration , 1996 .

[6]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[7]  G. Sundararajan,et al.  The sliding wear behaviour of AlSiC particulate composites—I. Macrobehaviour , 1996 .

[8]  C. Subramanian,et al.  Abrasive wear of aluminium composites—a review , 1996 .

[9]  S. Skolianos Mechanical behavior of cast SiCp-reinforced Al-4.5%Cu-1.5%Mg alloy , 1996 .

[10]  J. Bi,et al.  Sliding wear behaviour of SiC particle reinforced 2024 aluminium alloy composites , 1996 .

[11]  C. Subramanian,et al.  Dry sliding wear of aluminium composites : A review , 1997 .

[12]  B. K. Prasad,et al.  Study of erosive-corrosive wear characteristics of an aluminium alloy composite through factorial design of experiments , 1998 .

[13]  S. Tjong,et al.  Wear behaviour of an Al–12% Si alloy reinforced with a low volume fraction of SiC particles , 1998 .

[14]  A. H. Yegneswaran,et al.  Abrasive wear of Al alloy–Al2O3 particle composite: a study on the combined effect of load and size of abrasive , 1998 .

[15]  S. Lim,et al.  High-speed tribological properties of some Al/SiCp composites: I. Frictional and wear-rate characteristics , 1999 .

[16]  D. Niesz,et al.  Wear-resistant aluminum–boron–carbide cermets for automotive brake applications , 1999 .

[17]  J. W. Kaczmar,et al.  The production and application of metal matrix composite materials , 2000 .

[18]  A. H. Yegneswaran,et al.  Abrasive wear behaviour of zinc-aluminium alloy - 10% Al2O3 composite through factorial design of experiment , 2001 .

[19]  A. Riahi,et al.  The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites , 2001 .

[20]  Y. Şahin Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis , 2003 .

[21]  A. H. Yegneswaran,et al.  High stress abrasive wear behavior of sillimanite-reinforced Al-alloy matrix composite: A factorial design approach , 2003 .

[22]  F. Gül,et al.  Effect of the reinforcement volume fraction on the dry sliding wear behaviour of Al–10Si/SiCp composites produced by vacuum infiltration technique , 2004 .

[23]  A. Molinari,et al.  Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material , 2004 .

[24]  Rajiv S. Mishra,et al.  Microstructural Optimization of Alloys Using a Genetic Algorithm , 2004 .

[25]  B. Basu,et al.  Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite , 2005 .

[26]  Y. Sahin,et al.  Optimization of testing parameters on the wear behaviour of metal matrix composites based on the Taguchi method , 2005 .

[27]  Ping Liu,et al.  Optimization of the processing parameters during internal oxidation of Cu–Al alloy powders using an artificial neural network , 2005 .

[28]  Davi Sampaio Correia,et al.  Comparison between genetic algorithms and response surface methodology in GMAW welding optimization , 2005 .

[29]  Hasan Kurtaran,et al.  Application of response surface methodology in the optimization of cutting conditions for surface roughness , 2005 .

[30]  Y. Şahin Optimal testing parameters on the wear behaviour of various steels , 2006 .

[31]  D. Mondal,et al.  Erosive-corrosive wear of aluminum alloy composites : Influence of slurry composition and speed , 2006 .

[32]  S. Basavarajappa,et al.  Dry sliding wear behavior of metal matrix composites: A statistical approach , 2006 .

[33]  S. Basavarajappa,et al.  Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites , 2006 .

[34]  Zhang Yongzhen,et al.  Optimisation of chemical composition of high speed steel with high vanadium content for abrasive wear using an artificial neural network , 2007 .

[35]  S. Basavarajappa,et al.  Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites , 2007 .

[36]  Zhao Guoqun,et al.  Technologic parameter optimization of gas quenching process using response surface method , 2007 .

[37]  B. Oraon,et al.  Parametric optimization and prediction of electroless Ni–B deposition , 2007 .

[38]  Jesús Rodríguez,et al.  Dry sliding wear behaviour of aluminium–lithium alloys reinforced with SiC particles , 2007 .

[39]  Wear behaviour of an aluminium matrix composite , 2008 .

[40]  D. Wei,et al.  Optimization and tolerance prediction of sheet metal forming process using response surface model , 2008 .

[41]  M. Surappa,et al.  Sliding wear behavior of Al-Li-SiCp composites , 2008 .

[42]  V. Tsoukalas Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis , 2008 .

[43]  A. Ureña,et al.  Effect of reinforcement coatings on the dry sliding wear behaviour of aluminium/SiC particles/carbon fibres hybrid composites , 2009 .

[44]  A. Cai,et al.  Optimization of composition of as-cast chromium white cast iron based on wear-resistant performance , 2009 .

[45]  R. Karthikeyan,et al.  Study of electrochemical machining characteristics of Al/SiCp composites , 2009 .

[46]  S. Ray,et al.  Effect of transfer layer on dry sliding wear behaviour of cast Al-based composites synthesized by addition of TiO2 and MoO3 , 2009 .