Discrete resonant Rossby/drift wave triads: Explicit parameterisations and a fast direct numerical search algorithm

Abstract We report results on the explicit parameterisation of discrete Rossby-wave resonant triads of the Charney-Hasegawa-Mima equation in the small-scale limit (i.e. large Rossby deformation radius), following up from our previous solution in terms of elliptic curves [6]. We find an explicit parameterisation of the discrete resonant wavevectors in terms of two rational variables. We show that these new variables are restricted to a bounded region and find this region explicitly. We argue that this can be used to reduce the complexity of a direct numerical search for discrete triad resonances. Also, we introduce a new direct numerical method to search for discrete resonances. This numerical method has complexity O ( N 3 ) (up to logarithmic factors), where N is the largest wavenumber in the search. We apply this new method to find all discrete irreducible resonant triads in the wavevector box of size 5000, in a calculation that took about 10.5 days on a 16-core machine. Finally, based on our method of mapping to elliptic curves, we discuss some dynamical implications regarding the spread of quadratic invariants across scales via resonant triad interactions, through the analysis of sharp bounds on the relative sizes of the resonantly interacting wavevectors.

[1]  Vladimir E. Zakharov,et al.  Weak turbulence in media with a decay spectrum , 1965 .

[2]  Laminated wave turbulence: Generic algorithms iii , 2007, math-ph/0701030.

[3]  V. Zakharov,et al.  Five-wave interaction on the surface of deep fluid , 1994 .

[4]  Elena Kartashova,et al.  Model of intraseasonal oscillations in earth's atmosphere. , 2007, Physical review letters.

[5]  Vladimir P. Krasitskii,et al.  On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves , 1994, Journal of Fluid Mechanics.

[6]  A. Vedenov THEORY OF A WEAKLY TURBULENT PLASMA , 1967 .

[7]  University of Warwick,et al.  A weak turbulence theory for incompressible magnetohydrodynamics , 2000, Journal of Plasma Physics.

[8]  J. G. Charney,et al.  On the Scale of Atmospheric Motions , 1990 .

[9]  Kevin Hutchinson,et al.  Exact discrete resonances in the Fermi-Pasta-Ulam-Tsingou system , 2018, Commun. Nonlinear Sci. Numer. Simul..

[10]  Modulational Instability in Basic Plasma and Geophysical Models , 2013, 1312.4256.

[11]  R. Peierls,et al.  Zur kinetischen Theorie der Wärmeleitung in Kristallen , 1929 .

[12]  C. Connaughton,et al.  Externally forced triads of resonantly interacting waves: Boundedness and integrability properties , 2012, 1201.2867.

[13]  J. Krommes,et al.  Zonal Flow as Pattern Formation , 2013, Zonal Jets.

[14]  Quadratic invariants for discrete clusters of weakly interacting waves , 2012, 1212.3156.

[15]  Gregory Falkovich,et al.  Kolmogorov Spectra of Turbulence I: Wave Turbulence , 1992 .

[16]  Elena Kartashova,et al.  Cluster dynamics of planetary waves , 2008, 0801.3374.

[17]  E. Kartashova Discrete wave turbulence , 2009, 0907.4406.

[18]  A. Hasegawa,et al.  Pseudo-three-dimensional turbulence in magnetized nonuniform plasma , 1978 .

[19]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[20]  Bob Rink Symmetry and Resonance in Periodic FPU Chains , 2001 .

[21]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[22]  Bruce J. West,et al.  Chaotic properties of internal wave triad interactions , 1997 .

[23]  Sergei I. Badulin,et al.  On two approaches to the problem of instability of short-crested water waves , 1995, Journal of Fluid Mechanics.

[24]  Tucson,et al.  Mesoscopic wave turbulence , 2005, physics/0508155.

[25]  A. Craik,et al.  Wave Interactions and Fluid Flows , 1986 .

[26]  V. Zeitlin,et al.  Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves , 2000 .

[27]  A number theoretical observation of a resonant interaction of Rossby waves , 2014, 1409.1031.

[28]  Discreteness and its effect on water-wave turbulence , 2005, math-ph/0507054.

[29]  K. Hasselmann On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory , 1962, Journal of Fluid Mechanics.

[30]  Miguel D. Bustamante,et al.  Complete classification of discrete resonant Rossby/drift wave triads on periodic domains , 2012, Commun. Nonlinear Sci. Numer. Simul..

[31]  Gene S. Kopp The Arithmetic Geometry of Resonant Rossby Wave Triads , 2016, SIAM J. Appl. Algebra Geom..

[32]  F. Bouchet,et al.  Zonal Flows as Statistical Equilibria , 2016, Zonal Jets.

[33]  Effective five-wave Hamiltonian for surface water waves , 1997 .

[34]  D. Lucas,et al.  Robust energy transfer mechanism via precession resonance in nonlinear turbulent wave systems. , 2014, Physical review letters.

[35]  F. Bouchet,et al.  Kinetic theory and quasilinear theories of jet dynamics , 2014, 1602.02879.

[36]  Sergio Rica,et al.  Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum? , 2006, Physical review letters.

[37]  E. Kartashova,et al.  LAMINATED WAVE TURBULENCE: GENERIC ALGORITHMS I , 2006 .

[38]  S. Nazarenko,et al.  Discrete and mesoscopic regimes of finite-size wave turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Brian F. Farrell,et al.  Statistical State Dynamics: A New Perspective on Turbulence in Shear Flow , 2014, Zonal Jets.

[40]  Alan C. Newell,et al.  Wave Turbulence , 2011 .