Retractions onto series-parallel posets

The poset retraction problem for a poset P is whether a given poset Q containing P as a subposet admits a retraction onto P, that is, whether there is a homomorphism from Q onto P which fixes every element of P. We study this problem for finite series-parallel posets P. We present equivalent combinatorial, algebraic, and topological charaterisations of posets for which the problem is tractable, and, for such a poset P, we describe posets admitting a retraction onto P.

[1]  Marcin Benke,et al.  Some Complexity Bounds for Subtype Inequalities , 1999, Theor. Comput. Sci..

[2]  Rolf H. Möhring,et al.  Scheduling series-parallel orders subject to 0/1-communication delays , 1999, Parallel Comput..

[3]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[4]  John C. Mitchell,et al.  Algorithmic aspects of type inference with subtypes , 1992, POPL '92.

[5]  R. Ho Algebraic Topology , 2022 .

[6]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[7]  László Zádori,et al.  Idempotent Totally Symmetric Operations on Finite Posets , 2001, Order.

[8]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[9]  Benoît Larose,et al.  The Complexity of the Extendibility Problem for Finite Posets , 2003, SIAM J. Discret. Math..

[10]  László Zádori Series parallel posets with nonfinitely generated clones , 1993 .

[11]  Peter Nevermann,et al.  Holes in ordered sets , 1985, Graphs Comb..

[12]  Jerzy Tiuryn,et al.  Satisfiability of Inequalities in a Poset , 1996, Fundam. Informaticae.

[13]  Maurice Pouzet,et al.  Retracts: graphs and ordered sets from the metric point of view , 1986 .

[14]  Gábor Kun,et al.  Order Varieties and Monotone Retractions of Finite Posets , 2001, Order.

[15]  Rolf H. Möhring,et al.  Computationally Tractable Classes of Ordered Sets , 1989 .

[16]  B. Larose,et al.  Finite posets and topological spaces in locally finite varieties , 2005 .

[17]  Dwight Duffus,et al.  A structure theory for ordered sets , 1981, Discret. Math..

[18]  Pascal Weil,et al.  Series-Parallel Posets: Algebra, Automata and Languages , 1998, STACS.

[19]  P. Hell,et al.  Absolute Retracts and Varieties of Reflexive Graphs , 1987, Canadian Journal of Mathematics.