A Padé family of iterations for the matrix sign function and related problems

In this paper we consider the Padé family of iterations for computing the matrix sign function and the Padé family of iterations for computing the matrix p-sector function. We prove that all the iterations of the Padé family for the matrix sign function have a common convergence region. It completes a similar result of Kenney and Laub for half of the Padé family. We show that the iterations of the Padé family for the matrix p-sector function are well defined in an analogous common region, depending on p. For this purpose we proved that the Padé approximants to the function (1−z)− ,0< <1, are a quotient of hypergeometric functions whose poles we have localized. Furthermore we proved that the coefficients of the power expansion of a certain analytic function form a positive sequence and in a special case this sequence has the log-concavity property. Copyright 2011 John Wiley & Sons, Ltd.

[1]  K. Zietak ALGORITHMS FOR THE MATRIX SECTOR FUNCTION , 2009 .

[2]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[3]  Slobodan Lakić On the Computation of the Matrix k-th Root , 1998 .

[4]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[5]  Leang S. Shieh,et al.  Matrix sector functions and their applications to systems theory , 1984 .

[6]  Bruno Iannazzo,et al.  The Pade iterations for the matrix sign function and their reciprocals are optimal , 2010, 1011.1725.

[7]  R. B. Leipnik,et al.  Rapidly convergent recursive solution of quadratic operator equations , 1971 .

[8]  K. Driver,et al.  Zeros of the Hypergeometric Polynomial F(-n, b; c; z) , 2001, 0812.0708.

[9]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[10]  G. A. Baker Essentials of Padé approximants , 1975 .

[11]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[12]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[13]  Francisco Marcellán,et al.  Orthogonal Polynomials and Special Functions , 2003 .

[14]  Nicholas J. Higham,et al.  A Schur-Padé Algorithm for Fractional Powers of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[15]  K Driver,et al.  Convergence of ray sequences of Padé approximants for 2 f 1(a, 1; c; z), (c > a > 0) , 2002 .

[16]  A. Laub,et al.  Rational iterative methods for the matrix sign function , 1991 .

[17]  Kathy Driver,et al.  Quadratic and cubic transformations and zeros of hypergeometric polynomials , 2002 .

[18]  Nicholas J. Higham,et al.  Computing the Polar Decomposition and the Matrix Sign Decomposition in Matrix Groups , 2004, SIAM J. Matrix Anal. Appl..

[19]  Z. Kovarik Some Iterative Methods for Improving Orthonormality , 1970 .

[20]  Alan J. Laub,et al.  Positive and negative solution of dual Riccati equations by matrix sign function iteration , 1989 .

[21]  E. Denman,et al.  A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues , 1973 .

[22]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[23]  Eduardo H. M. Brietzke Monotonicity of Coefficients of Reciprocal Power Series , 2001 .

[24]  Krystyna Zietak,et al.  A Padé family of iterations for the matrix sector function and the matrix pth root , 2009, Numer. Linear Algebra Appl..

[25]  Bruno Iannazzo,et al.  A Family of Rational Iterations and Its Application to the Computation of the Matrix pth Root , 2008, SIAM J. Matrix Anal. Appl..

[26]  Yeong-Nan Yeh,et al.  Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.

[27]  K. A. Driver,et al.  Products of hypergeometric functions and the zeros of 4F3 polynomials , 2004, Numerical Algorithms.

[28]  A. Laub,et al.  Padé error estimates for the logarithm of a matrix , 1989 .

[29]  Enrique S. Quintana-Ortí,et al.  Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function , 2007, Numerical Algorithms.

[30]  Theodor. Kaluza Über die Koeffizienten reziproker Potenzreihen , 1928 .

[31]  Jenö Lehel,et al.  Counting chains and antichains in the complete binary tree , 2006, Ars Comb..

[32]  Richard S. Varga,et al.  On the Eneström-Kakeya theorem and its sharpness , 1979 .

[33]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .