The Geometry of Asymptotic Inference

[1]  Iain M. Johnstone,et al.  Hotelling's Theorem on the Volume of Tubes: Some Illustrations in Simultaneous Inference and Data Analysis , 1990 .

[2]  P. Vos Fundamental equations for statistical submanifolds with applications to the Bartlett correction , 1989 .

[3]  M. Murray Coordinate systems and Taylor series in statistics , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[5]  O. Barndorff-Nielsen,et al.  Strings: mathematical theory and statistical examples , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Suresh H. Moolgavkar,et al.  Confidence Regions in Curved Exponential Families: Application to Matched Case-Control and Survival Studies with General Relative Risk Function , 1987 .

[7]  S. Moolgavkar,et al.  Confidence regions for parameters of the proportional hazards model: a simulation study , 1987 .

[8]  R. R. Bahadur Some Limit Theorems in Statistics , 1987 .

[9]  Peter McCullagh,et al.  Invariants and likelihood ratio statistics , 1986 .

[10]  Chih-Ling Tsai,et al.  Bias in nonlinear regression , 1986 .

[11]  O. E. Barndorff-Nielsen Likelihood and Observed Geometries , 1986 .

[12]  O. Barndorff-Nielsen Strings, tensorial combinants, and Bartlett adjustments , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Dennis E. Jennings Judging Inference Adequacy in Logistic Regression , 1986 .

[14]  D. Cox,et al.  The role of differential geometry in statistical theory , 1986 .

[15]  P. Hougaard The Appropriateness of the Asymptotic Distribution in a Nonlinear Regression Model in Relation to Curvature , 1985 .

[16]  Ib M. Skovgaard,et al.  A Second-Order Investigation of Asymptotic Ancillarity , 1985 .

[17]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[18]  S. Amari,et al.  Estimation of a structural parameter in the presence of a large number of nuisance parameters , 1984 .

[19]  J. Burbea Informative Geometry of Probability Spaces , 1984 .

[20]  S. Eguchi A characterization of second order efficiency in a curved exponential family , 1984 .

[21]  R. Kass,et al.  A note on the interpretation of the Bahadur bound and the rate of convergence of the maximum likelihood estimator , 1984 .

[22]  Robert E. Kass,et al.  Canonical Parameterizations and Zero Parameter‐Effects Curvature , 1984 .

[23]  C. R. Rao,et al.  Differential metrics in probability spaces , 1984 .

[24]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[25]  S. Amari,et al.  Differential geometry of edgeworth expansions in curved exponential family , 1983 .

[26]  S. Eguchi Second Order Efficiency of Minimum Contrast Estimators in a Curved Exponential Family , 1983 .

[27]  S. Amari,et al.  Geometrical theory of higher-order asymptotics of test, interval estimator and conditional inference , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  Shun-ichi Amari,et al.  Differential geometry of statistical inference , 1983 .

[29]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[30]  J. Pfanzagl,et al.  CONTRIBUTIONS TO A GENERAL ASYMPTOTIC STATISTICAL THEORY , 1982 .

[31]  J. Fu Large Sample Point Estimation: A Large Deviation Theory Approach , 1982 .

[32]  Bradley Efron,et al.  Maximum Likelihood and Decision Theory , 1982 .

[33]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[34]  D. G. Watts,et al.  Accounting for Intrinsic Nonlinearity in Nonlinear Regression Parameter Inference Regions , 1982 .

[35]  S. Amari Geometrical theory of asymptotic ancillarity and conditional inference , 1982 .

[36]  C. Atkinson Rao's distance measure , 1981 .

[37]  O. Barndorff-Nielsen Information and Exponential Families in Statistical Theory , 1980 .

[38]  S. Chern From Triangles to Manifolds , 1979 .

[39]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[40]  A. Dawid Further Comments on Some Comments on a Paper by Bradley Efron , 1977 .

[41]  C. Villegas,et al.  On the Representation of Ignorance , 1977 .

[42]  P. Holland,et al.  Discrete Multivariate Analysis. , 1976 .

[43]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[44]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[45]  J. Ghosh,et al.  Second order efficiency of maximum likelihood estimators , 1974 .

[46]  Paul W. Holland,et al.  Covariance Stabilizing Transformations , 1973 .

[47]  W. Rogers,et al.  Understanding some long-tailed symmetrical distributions , 1972 .

[48]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[49]  C. Stein Approximation of Improper Prior Measures by Prior Probability Measures , 1965 .

[50]  Calyampudi R. Rao Criteria of estimation in large samples , 1965 .

[51]  L. L. Cam,et al.  Sufficiency and Approximate Sufficiency , 1964 .

[52]  M. W. Birch A New Proof of the Pearson-Fisher Theorem , 1964 .

[53]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[54]  Calyampudi R. Rao Asymptotic Efficiency and Limiting Information , 1961 .

[55]  M. S. Bartlett,et al.  Statistical methods and scientific inference. , 1957 .

[56]  Harold Jeffreys,et al.  THE PRESENT POSITION IN PROBABILITY THEORY* , 1955, The British Journal for the Philosophy of Science.

[57]  Mark Kac,et al.  Toeplitz matrices, translation kernels and a related problem in probability theory , 1954 .

[58]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[59]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[60]  Wilfred Perks,et al.  Some observations on inverse probability including a new indifference rule , 1947 .

[61]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[62]  R. Fisher,et al.  The Logic of Inductive Inference , 1935 .

[63]  R. Fisher Two New Properties of Mathematical Likelihood , 1934 .

[64]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .