Equivelar Polyhedra with Few Vertices

We know that the polyhedra corresponding to the Platonic solids are equivelar. In this article we have classified completely all the simplicial equivelar polyhedra on ≤ 11 vertices. There are exactly 27 such polyhedra. For each n\geq -4 , we have classified all the (p,q) such that there exists an equivelar polyhedron of type {p,q} and of Euler characteristic n . We have also constructed five types of equivelar polyhedra of Euler characteristic -2m , for each m\geq 2.

[1]  Egon Schulte,et al.  Reguläre Inzidenzkomplexe III , 1983 .

[2]  Bhaskar Bagchi,et al.  A structure theorem for pseudomanifolds , 1998, Discret. Math..

[3]  W. Magnus Noneuclidean tesselations and their groups , 1974 .

[4]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[5]  G. Ringel,et al.  Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann , 1955 .

[6]  Andrew Vince Regular combinatorial maps , 1983, J. Comb. Theory, Ser. B.

[7]  Peter McMullen,et al.  Equivelar polyhedral manifolds inE3 , 1982 .

[8]  Peter McMullen,et al.  Polyhedral 2-manifolds inE3 with unusually large genus , 1983 .

[9]  Ulrich Brehm,et al.  Polyhedral Maps with Few Edges , 1990 .

[10]  G. Ringel Map Color Theorem , 1974 .

[11]  G. Ringel,et al.  Bestimmung der Maximalzahl der Nachbargebiete auf nichtorientierbaren Flächen , 1954 .

[12]  Peter McMullen,et al.  Two remarks on equivelar manifolds , 1985 .

[13]  G. Ringel,et al.  Minimal triangulations on orientable surfaces , 1980 .

[14]  Basudeb Datta,et al.  Two-dimensional weak pseudomanifolds on eight vertices , 2002 .

[15]  Ravi S. Kulkarni,et al.  Regular tessellations of surfaces and (p, q, 2)-triangle groups , 1982 .

[16]  Peter McMullen,et al.  Finite Quotients of Infinite Universal Polytopes , 1990, Discrete and Computational Geometry.

[17]  Wolfgang Kühnel,et al.  TRIANGULATIONS OF MANIFOLDS WITH FEW VERTICES , 1990 .

[18]  Peter McMullen,et al.  Regular Maps Constructed from Linear Groups , 1993, Eur. J. Comb..

[19]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .