Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system

Remotely sensed hyperspectral image classification is a very challenging task due to the spatial correlation of the spectral signature and the high cost of true sample labeling. In light of this, the collective inference paradigm allows us to manage the spatial correlation between spectral responses of neighboring pixels, as interacting pixels are labeled simultaneously. The transductive inference paradigm allows us to reduce the inference error for the given set of unlabeled data, as sparsely labeled pixels are learned by accounting for both labeled and unlabeled information. In this paper, both these paradigms contribute to the definition of a spectral-relational classification methodology for imagery data. We propose a novel algorithm to assign a class to each pixel of a sparsely labeled hyperspectral image. It integrates the spectral information and the spatial correlation through an ensemble system. For every pixel of a hyperspectral image, spatial neighborhoods are constructed and used to build application-specific relational features. Classification is performed with an ensemble comprising a classifier learned by considering the available spectral information (associated with the pixel) and the classifiers learned by considering the extracted spatio-relational information (associated with the spatial neighborhoods). The more reliable labels predicted by the ensemble are fed back to the labeled part of the image. Experimental results highlight the importance of the spectral-relational strategy for the accurate transductive classification of hyperspectral images and they validate the proposed algorithm.

[1]  Kalyan Moy Gupta,et al.  Case-Based Collective Classification , 2007, FLAIRS.

[2]  Jon Atli Benediktsson,et al.  Hyperspectral Image Classification With Independent Component Discriminant Analysis , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  S. Sathiya Keerthi,et al.  Large scale semi-supervised linear SVMs , 2006, SIGIR.

[4]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[5]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[6]  David D. Jensen,et al.  Autocorrelation and Relational Learning: Challenges and Opportunities , 2004 .

[7]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Classification of Hyperspectral Data Usi , 2022 .

[8]  Michelangelo Ceci,et al.  RELATIONAL DATA MINING AND ILP FOR DOCUMENT IMAGE UNDERSTANDING , 2007, Appl. Artif. Intell..

[9]  Francesca Bovolo,et al.  A Novel Context-Sensitive SVM for Classification of Remote Sensing Images , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[10]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[11]  Ian Witten,et al.  Data Mining , 2000 .

[12]  Chein-I Chang,et al.  Hyperspectral Data Exploitation , 2007 .

[13]  Jennifer Neville,et al.  Why collective inference improves relational classification , 2004, KDD.

[14]  Antonio J. Plaza,et al.  Spectral–Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for Mixed Pixel Characterization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Murat Dundar,et al.  Learning Classifiers When the Training Data Is Not IID , 2007, IJCAI.

[16]  Michelangelo Ceci,et al.  Dealing with spatial autocorrelation when learning predictive clustering trees , 2013, Ecol. Informatics.

[17]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[18]  L. Dublin Vital Statistics. , 1961, British medical journal.

[19]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[20]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[21]  Bing Zhang,et al.  A Review of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information , 2014 .

[22]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[23]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Ashwin Srinivasan,et al.  Feature construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes , 1999, Data Mining and Knowledge Discovery.

[25]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[26]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Luc De Raedt,et al.  There are plenty of places like home: Using relational representations in hierarchies for distance-based image understanding , 2014, Neurocomputing.

[28]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[29]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Hyperspectral Image Segmentation Using S , 2022 .

[30]  J. LeSage,et al.  Spatial Dependence in Data Mining , 2001 .

[31]  Michelangelo Ceci,et al.  A relational approach to probabilistic classification in a transductive setting , 2009, Eng. Appl. Artif. Intell..

[32]  Philip S. Yu,et al.  Collective prediction with latent graphs , 2011, CIKM '11.

[33]  Jennifer Neville,et al.  Iterative Classification in Relational Data , 2000 .

[34]  Lawrence B. Holder,et al.  Discovering Structural Anomalies in Graph-Based Data , 2007 .

[35]  Huzefa Rangwala,et al.  Multi-label Collective Classification Using Adaptive Neighborhoods , 2012, 2012 11th International Conference on Machine Learning and Applications.

[36]  Lise Getoor,et al.  Link-Based Classification , 2003, Encyclopedia of Machine Learning and Data Mining.

[37]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[38]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[39]  Annalisa Appice,et al.  Iterative Hyperspectral Image Classification Using Spectral–Spatial Relational Features , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Ben Taskar,et al.  Probabilistic Classification and Clustering in Relational Data , 2001, IJCAI.

[41]  Chen Chen,et al.  Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine , 2014, Remote. Sens..

[42]  Francesca Bovolo,et al.  Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Herna L. Viktor,et al.  Transductive Relational Classification in the Co-training Paradigm , 2012, MLDM.

[44]  Donato Malerba,et al.  Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering , 2014, Data Mining and Knowledge Discovery.

[45]  Yuanqing Li,et al.  A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system , 2008, Pattern Recognit. Lett..

[46]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[47]  Nada Lavrac,et al.  Propositionalization-based relational subgroup discovery with RSD , 2006, Machine Learning.

[48]  Fumio Mizoguchi,et al.  Using Inductive Logic Programming to Learn Rules that Identify Glaucomatous Eyes , 1997 .

[49]  Jon Atli Benediktsson,et al.  A spatial-spectral kernel-based approach for the classification of remote-sensing images , 2012, Pattern Recognit..

[50]  Jie Yin,et al.  Transfer Learning across Networks for Collective Classification , 2013, 2013 IEEE 13th International Conference on Data Mining.

[51]  Rui Huang,et al.  Using tri-training to exploit spectral and spatial information for hyperspectral data classification , 2012, 2012 International Conference on Computer Vision in Remote Sensing.

[52]  Qian Du,et al.  Hyperspectral Image Classification Using Band Selection and Morphological Profiles , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[53]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .

[54]  Ying Wang,et al.  Semi-supervised classification for hyperspectral imagery based on spatial-spectral Label Propagation , 2014 .

[55]  Shiliang Sun,et al.  A survey of multi-view machine learning , 2013, Neural Computing and Applications.

[56]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[57]  Michael K. Ng,et al.  Transductive Multilabel Learning via Label Set Propagation , 2013, IEEE Transactions on Knowledge and Data Engineering.

[58]  Tatjana Zrimec,et al.  Learning to Classify X-Ray Images Using Relational Learning , 1998, ECML.

[59]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[60]  Lise Getoor,et al.  Combining Collective Classification and Link Prediction , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[61]  Jason Weston,et al.  Semisupervised Neural Networks for Efficient Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[62]  M. Opper,et al.  Comparing the Mean Field Method and Belief Propagation for Approximate Inference in MRFs , 2001 .

[63]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[64]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[65]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[66]  Donato Malerba,et al.  Dealing with temporal and spatial correlations to classify outliers in geophysical data streams , 2014, Inf. Sci..

[67]  Matthai Philipose,et al.  Relational Learning for Collective Classification of Entities in Images , 2010, Statistical Relational Artificial Intelligence.

[68]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[69]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[70]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[71]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[72]  Johannes R. Sveinsson,et al.  Ensemble Strategies for Classifying Hyperspectral Remote Sensing Data , 2009, MCS.

[73]  Matthias Seeger,et al.  Learning from Labeled and Unlabeled Data , 2010, Encyclopedia of Machine Learning.

[74]  Kalyan Moy Gupta,et al.  Cautious Collective Classification , 2009, J. Mach. Learn. Res..

[75]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[76]  Thorsten Joachims,et al.  Transductive Learning via Spectral Graph Partitioning , 2003, ICML.

[77]  Peter A. Flach,et al.  Comparative Evaluation of Approaches to Propositionalization , 2003, ILP.

[78]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[79]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[80]  Jennifer Neville,et al.  Relational Dependency Networks , 2007, J. Mach. Learn. Res..

[81]  Gustavo Camps-Valls,et al.  Semi-Supervised Graph-Based Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[82]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[83]  Michelangelo Ceci,et al.  Spatial associative classification: propositional vs structural approach , 2006, Journal of Intelligent Information Systems.

[84]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[85]  Jon Atli Benediktsson,et al.  A new framework for hyperspectral image classification using multiple spectral and spatial features , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[86]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[87]  Yair Weiss,et al.  Approximate Inference and Protein-Folding , 2002, NIPS.

[88]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[89]  Donato Malerba,et al.  A relational perspective on spatial data mining , 2008, Int. J. Data Min. Model. Manag..

[90]  R. Ablin,et al.  A Survey of Hyperspectral Image Classification in Remote Sensing , 2013 .

[91]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[92]  David W. Aha,et al.  Semi-Supervised Collective Classification via Hybrid Label Regularization , 2012, ICML.

[93]  Jon Atli Benediktsson,et al.  Fusion of Support Vector Machines for Classification of Multisensor Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[94]  L. Getoor,et al.  Link-Based Classification , 2003, Encyclopedia of Machine Learning and Data Mining.