t-Distributed Stochastic Neighbor Embedding with Inhomogeneous Degrees of Freedom
暂无分享,去创建一个
Seiichi Ozawa | Toshiaki Omori | Nicoleta Rogovschi | Nistor Grozavu | Jun Kitazono | S. Ozawa | T. Omori | Nistor Grozavu | Nicoleta Rogovschi | Jun Kitazono
[1] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[2] Laurens van der Maaten,et al. Learning a Parametric Embedding by Preserving Local Structure , 2009, AISTATS.
[3] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[4] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[5] Laurens van der Maaten,et al. Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..
[6] Ann B. Lee,et al. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Miguel Á. Carreira-Perpiñán,et al. Linear-time training of nonlinear low-dimensional embeddings , 2014, AISTATS.
[8] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[9] Eli Parviainen,et al. A graph-based N-body approximation with application to stochastic neighbor embedding , 2016, Neural Networks.
[10] Geoffrey E. Hinton,et al. Stochastic Neighbor Embedding , 2002, NIPS.
[11] Miguel Á. Carreira-Perpiñán,et al. Entropic Affinities: Properties and Efficient Numerical Computation , 2013, ICML.