Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran
暂无分享,去创建一个
[1] Josef Kittler,et al. Pattern Recognition Theory and Applications , 1987, NATO ASI Series.
[2] Gerardo Beni,et al. A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[3] G. Mateu-Figueras,et al. Isometric Logratio Transformations for Compositional Data Analysis , 2003 .
[4] S. H. Tabatabaei,et al. Objective based geochemical anomaly detection—Application of discriminant function analysis in anomaly delineation in the Kuh Panj porphyry Cu mineralization (Iran) , 2013 .
[5] Clemens Reimann,et al. Factor analysis applied to regional geochemical data: problems and possibilities , 2002 .
[6] Alexander Zien,et al. Semi-Supervised Learning , 2006 .
[7] Wenli Jiang,et al. Objective function of semi-supervised Fuzzy C-Means clustering algorithm , 2008, 2008 6th IEEE International Conference on Industrial Informatics.
[8] Anil K. Jain. Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..
[9] Witold Pedrycz,et al. Algorithms of fuzzy clustering with partial supervision , 1985, Pattern Recognit. Lett..
[10] Hongjin Ji,et al. Correspondence cluster analysis and its application in exploration geochemistry , 1995 .
[11] Weina Wang,et al. On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..
[12] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[13] John Aitchison,et al. The Statistical Analysis of Compositional Data , 1986 .
[14] H. H. Asadi,et al. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran , 2013 .
[15] Emmanuel John M. Carranza,et al. Application of Discriminant Analysis and Support Vector Machine in Mapping Gold Potential Areas for Further Drilling in the Sari-Gunay Gold Deposit, NW Iran , 2016, Natural Resources Research.
[16] E. Carranza. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with c , 2011 .
[17] Hai-Dong Meng,et al. Research and application of cluster and association analysis in geochemical data processing , 2011 .
[18] Ayhan Demiriz,et al. Semi-Supervised Support Vector Machines , 1998, NIPS.
[19] Daphne Teck Ching Lai,et al. An exploration of improvements to semi-supervised fuzzy c-means clustering for real-world biomedical data , 2014 .
[20] Boudewijn P. F. Lelieveldt,et al. A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..
[21] R. P. Chapman,et al. Exploration geochemistry—Distribution of elements and recognition of anomalies , 1975 .
[22] P. Filzmoser,et al. Univariate Statistical Analysis of Environmental (compositional) Data: Problems and Possibilities , 2009 .
[23] H. Pereira,et al. A case study on geochemical anomaly identification through principal components analysis supplementary projection , 2003 .
[24] Jonathan M. Garibaldi,et al. A preliminary study on automatic breast cancer data classification using semi-supervised fuzzy c-means , 2013 .
[25] Emmanuel John M. Carranza,et al. Multivariate regression analysis of lithogeochemical data to model subsurface mineralization: A case study from the Sari Gunay epithermal gold deposit, NW Iran , 2015 .
[26] R. Reyment,et al. Statistics and Data Analysis in Geology. , 1988 .
[27] G. Rantitsch. Application of fuzzy clusters to quantify lithological background concentrations in stream-sediment geochemistry , 2000 .
[28] D. L. Kelley,et al. Major advances in exploration geochemistry, 1998–2007 , 2010 .
[29] Witold Pedrycz,et al. Fuzzy clustering with partial supervision , 1997, IEEE Trans. Syst. Man Cybern. Part B.
[30] P.F.M. van Gaans,et al. The application of fuzzy c-means cluster analysis and non-linear mapping to geochemical datasets: examples from Portugal , 1988 .
[31] J. Bezdek. Cluster Validity with Fuzzy Sets , 1973 .
[32] Witold Pedrycz,et al. Data Clustering with Partial Supervision , 2005, Data Mining and Knowledge Discovery.
[33] F. Darabi-Golestan,et al. Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu–Au porphyry , 2013, Arabian Journal of Geosciences.
[34] Witold Pedrycz,et al. Knowledge-based clustering - from data to information granules , 2007 .
[35] M. Goldhaber,et al. Cluster analysis of a regional-scale soil geochemical dataset in northern California , 2011 .
[36] Yongjun Lu,et al. Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran , 2015 .
[37] G. Saffarini,et al. Multivariate statistical techniques in geochemical exploration applied to Wadi sediments' data from an arid region: Wadi Dana, SW Jordan , 1992 .
[38] K. Glennie. Cretaceous Tectonic Evolution of Arabia's Eastern Plate Margin: A Tale of Two Oceans , 2000 .
[39] T. Campbell McCuaig,et al. Exploratory data analysis and C–A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran , 2014 .